


webpage :

www.wtworden.org/teaohiy/ topology -5411
book : Purcell - Hyp .

Geom .

T knot Theory
+ occasional material from Benedetti e Petronio
Thurston

,
and maybe others

will cover : ( see syllabus)

homework : occasional to weekly , but not always
collected

.

Attendance : yes

Exams : no

Questions)
Requests : Is there anything that someone would
really like to see covered ?

Where to Begin ? 1977

'

÷÷i÷÷÷÷÷÷÷÷÷÷÷÷ :
Actually ,

Riley had already
proved this by finding a rep → pork

,
and encouraged

Thurston to think about hyp . statures on knots n> fig - 8 decamp .
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Ch
.

I
. Decomposition of the figure -8 knot

Def :
• A knot K E f

'

is a subset homeomorphic
to 8 ' via a piecewise linear homeo - son

.

- Alternatively
,
can think of K as a PL embedding

K : 5$ → 53
,
and by abuse of notation

identify K -

- KG ') .

• A link LES ' is the image L(X )
of a PT embedding L :X -

- S' w .
. .ws

'
→ 53 of

a disjoint union of copies of s
'

into s
'

.

• pLsmof I
'

: takes S
'

to fin . many linear segments

O -
• Lmk : Replace PL homeroom with smooth diffeo - son,

get same theory . If K :S
'
→ s
'
is an embedding

PL
,

then K is a wild knot .that is not

Je.g .

er - - - -
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Def : Two knots ( or links) K
, ,

K
,

are

equivalent if they are ambient isotopic
,

i. e.
,
F a (P1oh) homotopy

h :s3xco.D-sNrestripciionshnth.q.i@s.t
. ht .

,
t ) = ht : s

'
→ s

'

is a home o - sm

for each t
,
and h(K±

,

O) = hock. ) -- K ,
h (ke

,

D= h.lk . ) = Kz

Def i Let KES
'

be a knot ( resp .

link) in S3 .

• Ket exterior : SINK)
,
NIKI ⇐ int (EEE)

↳ compact 3- mfld w/ 2 homeo - c to T2 ↳ embedded
• Kent come : 531K
↳ open 3- mfld .

• define link exterior t ceomptements similarly .

Def : A Kmt (or Link) diagram is a 4- valent

graph with overlander crossing info at vertices
,

embedded in a perfection plane SZES '

( ideal polyhedral decamp
: ideal polyhedra P

, ,
Pa

a map 4 : Rupa → M

Hints, is a homeo - Sm for my 1,2 ,
or 3-

cell D
.
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Goal : Knott link diagram rn) decamp . of 531K

⑥
Refa : polyhedron : closed B

'

with 2133
labelled by a finite graph .

ideal pothead : polyhedron \{ vertices}
More specific goal : cut SMK into two

ideal polyhedra .

M -
-

p
-

ri: '

r
c• each face is a disk

,
bounded by edges and knot

strand Let X=AuDuCuBuEuF .

• Is *
'
'

homeo- c to s
' ?
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Near a crossing :

iE#
" " "

• X is pinched at edges (Totten ? d.

-

q::D:b .! memes:D
" items: threat in

.

- Y is an open ball
- T -- Yuk is a closed ball which has
been pinched at crossings .

If we
"
un pinch

" T : I

tr
,
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Next : shrink knot strands to vertices

- recall that we are trying to decompose 531km
into ideal polyhedra .

since

Inn
.
.mdl{ strand } ± Turpin .ua) {Pt)

shrinking strands to ( ideal) vertices does not

change Ytunpinomdlk ( up to homeo - rm)
.

D

AE -a:*.in." ÷:÷÷÷÷÷
.

"

Tl

For the other polyhedron , the process is similar
.

- when we un pinch ,
we should break the knot at

the over strand ,
instead of the understand ( from inside

,

over is under) :
-

I



DO
°

Thus we get : s

>
t

n

I

r.

It
⇒

Note : . we are looking at Pe from the outside .

• P
,

and 13 have bigon faces .

We can

collapse these by identifying the two edges
of each bison :

'

÷i÷÷÷÷a÷÷÷÷: ÷:÷÷÷:÷÷÷÷÷÷
.
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HW :

Ex . 1.1
,
1.2 , I -4

Ex : try to understand Figure 1.26 on page
41 of Thurston's book



8

Ch 2 : calculating in hyperbolic space

1.0 : Digression: M~diomet.es/BePchA .)

• Models for 1H
" (think n

-
- 213) "

111 Hyperboloid(Minkowski model

consider the sym . bilinear form of signature (nil )

f :ipnH→µ
( X " kn

,D= 44 ,
t - -

- t Xnyn - Xn+,yn+ ,
on pint '

n htt

+ many Define : M = ( x EIR '

- 41%
, , ,
= - l

,
Xn+ , > 0 }

( M" is (component of) the sphere of
M
" Ef

'

't- D n
'

ff - ble radius -1
,
sort of - I

AM.÷÷÷:÷:÷÷÷÷i÷÷÷÷÷÷i:*.T . For X E M
,

we have
an"
Lil .> = - I

I T×M^={y EIR
" '

: Gly > -

- o } = Xt (exercise)si Inn)

FI since 4×1×1 = - I
,
x > o) ⇒ XEM

"

X F (nil) htt

I

5- & the restriction of l 't -7cm, to Xt
t t is positive definite"
t
'

E : as:c'¥a¥¥n¥ !:p:::p:
" 'D

.



← Thus we get a Riemannian metric on M
"

Denote by IM
"

the mfld M" with this metric .

( disk)
(2) Poincare ball model

Let D" be the open unit
in IR

" .ee/Rnxfo3E1Rnt1

it:÷÷÷÷÷i÷÷÷iii.
¥xn+

,

(Xi , -
- -

,
Xn) ( 0,0, - t )

denote by D
"

the manifold D
"

with the

pull - back metric her . t .
TC
- t

.

( plane)(3) Upper half - space model '
.

Let Un ={ X EIR
"

: xn > 0 }
,

and define
i :*- un by 1/1/11x.→ 2 e

- en %.aDenote by IU
"

the upper ,

'
'

half - plane U
"

with the pull - back , co , o , i
metric writ . I "

'

\
-
e -
-

r

'

'

note : i is a sphere
inversion in the sphere
centered at - en of radius 52 .
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(4) Klein Model

Let IT be the open disk

KE ft EIR"
'

: 11×11<1
,

x -
- I }-Ntl

and let f : IM
"

→ K
"

be defined by its ( ¥
. .
.

. . . . II. ,
i )

IK
"

is the Klein model when given the

pull - back metric writ . f-
'

Rmk :(Hi is a convex domain in projective spare IRP
"

, so Ht
"

Isometries . is a convex projective domain)
For a Riemannian mfld N :

notation : Isom (N ) = { isometry group of N }
↳mtfN ) = {orientation preserving subgroup}

Recall : f :p →N is an isometry means

tdfxlv) Idf.CN/fu,--Lv/w7x-VxtN , v.WEIN

Also : Isometries a determined locally , i.e,

If f : N → N and g
: N → N are isometries

,

and fly ) -

- gey) and df, edgy for some YEN ,
then f --g
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' Let n -- ptq ,
and V EIR

"

ftp.f-O/V,ClYp.?--fAEG4n.lRl:CAxlAyYp.ELxiyk.,V-4yeV}
where Lei , gyp

,
,={ 9 II }ep

- I i -- g > p

- Let XEV
,
( x. e) to

,

and let proj .- ✓ → Xt
be the projection onto xt

Let fi : V ↳ Zprojlv) - v be the reflection
across it

P×E0lp,q) : (2pm - V
,
2pm - w )

= ( 2pm , 2pm) - 442pm)) - (W, Zplv ))

thus

2hpm , plus ) - 21pm ,
w)

2hpm) , pm ) - 2{ plw) , V) TLV,w )
= -21pm ,

w - plus ) - 2 ( plus , V - plus > the,w)
- -

=D =D

since pm EV i ,

and w - plur) EV
t

= (yw)
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Lemme : Olpe ) is generated by (Pe '

- x EV
,
Lx

,
x>to}

proof : first note that - In -

- f-
'
'

:-, ) is

generated by reflections across the eit ,

where { ei ) is the standard basis .

Induct on n
.
n
-

- I is obvious.

Let AE Ocp , q ) ,
VEV sit

. (Yu> to

- can assume ( Av - V
,
Av - V) to

- otherwise
, replace A with A. f-I ) = -A

Let x -- Av - r
, Px the reflection acrooffyafetperp.LA
-

since V -- tz(Arty - Iftu - v ) and (Avtv, Av - V> =D
A) ⇒ Eight = (Av

,
Av) - 4,4=0

Pxlv) -- 2 projlv ) - v
= Aviv - v

-

- Av
.

f. Cv)
-

- Av ⇒ p×CAvI=V , so (p×oAHv) -- V
Alpin) -- v

⇒ canthi. outrank.µ÷÷÷:÷÷÷÷÷:= Ohrt
,
L - t.7pi.gg ) t basis fed it .

for some P' ti -- n - '
'

cap, -10, sp
'

' - I i -- j > p
'

by induction (Petty is generated by reflections in

044:D
,
and all "such reflections extend to V

.

i
. 01pm) is generated by reflections . II
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Let C) (Mn ) I 01mi ) be the subgroup
consisting of maps that keep M " invariant

,

and so (Mn ) = 01M " ) n SHnti.IR) .

These are closed subgroups of Gunn ,
IR )

,
hence

Lie groups .

Prop : 01M " ) is generated by the reflections
it contains .

If IX. x > to
,

then Px keeps MVC-Mn)
invariant ( since for these luv) -- - t ) ,

and Px

exchanges M
"

and -M
" ⇐ ( x. x > < 0

.

In the case ( X. x > co
,

we can replace
Px with - B

,
where B is a product

of reflections fixing Mn .

-

Xi Qi fixes w, , we

(see Bep for details) .

fit. .IS?w.?iwnsw.
him

w
.

I.pmopwit'D
fixes W

, ,
we
,

sends kits -Xi
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Them : Isom ( IM
"

) = Ocmn ) and bom41M7= 501Mt .

In particular , Gomm) is generated by
reflections .

proof : Clearly , for my AEOCM ")
,
Alain is an

isometry , since Aeon . .) -4in:L? :P'
own derivatives

Now
,
let ft Isom ( IM " )

,
x E IM

"

,
and define

A : IR
"'
# Rex>⑦ #t) → pit '

Xx t V T t fix ) tdf , Cv )

Atom : ( tfwtdf.CH , tfcxltdf.tw ) )
= Wfm .fm) tHfHidfxW!odf¥!dfµ, c- first

+ ( dfxcvl
,
dfxlw)) df.ws c- fast

= Tsx
,
x ) t ( tx

,

Vtw) t (V
,
w>

To
= ( txtv

,
txtw > ⇒ Ae Oln , D ⇒ A C- 0(Mn)

since fun = Ax and dfx = Alwyn , f must
be Alain linde ineadreiocally) fi÷ then

i . Isom ( IM " ) = {Al,,yn
: A C- 01mm} they are ecoual on Mnt

.

'

since span { Mn) = Rn
"

,
the map Ars Alm .

ElrondMn)

is Em, so a group isomorphism.
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kometofDand_U

"

:

recall : f : M -7N is conformed if

( df.lv ) , df.tw ) > = acrysv, w >
'

'.

fix) x

for some differentiable positive fn .
acx)

,
all XEM

,

4W C- IM .

fire
, f preserves angles , not nee . lengths) .

III!!:{Lemme;÷.

,mwith→th, Eni's.am her:p
.

" on Dn
.

next page

pheof : Tl : IM
"
→ Dn is defined by

Tl (x. H -

- ¥
,
XEIR'

, Kit) EIR
" '

so d
⇒
His) = It - 1,7¥ ,

and

Hanshin ,
d
⇒
heirs)=f¥if÷l¥ - Ttt )

-

- I:*. - titty - i¥+ii¥
= fifty - fifty - I¥strs!ti=¥yk"" - rs)

=
( Goltz ,r))

±UiT#→ II
-

since Lxlx ) -- f - I , 4. y )
-

- St
, Laz> = rt
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-
theorem : Isom (D

") E Conf ( Dh) conformal map
→ writ . Euclidean

Isom ( IU
"

) = Conf ( Un ) metric .

-

proof :

( E ) since isometries are conformal
,

Isom ( D
") E conf ( Dh ) by the Lemma

.

↳ to foti '
, feboml.IM)

Thus since sphere inversions are conformal
,

Isom (Un ) C- Conf ( U
" )

.

( Z ) : we will use
'

.

Fact : Conf ( D
" ) is generated by sphere

inversions fixing 3D
"
-

- S"
,

and
conf (Un) is generated by sphere
inversions fixing 2h" -

- IR" - ' v {a}
( here a reflection is considered a sphere
inversion in the sphere {plane} ufo } )

i. suffices to show sphere inversions are isometries

Recall : Inversion in a sphere S :
T"

naive:* :* :*
and SLS

'

.

Then S

Tui is in s
'

,

and
on the line thru X

and center of S .
)
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Let T.IR "

→ IR " be a sphere inversion fixing
D
"

( set wire) .

Then T is inversion in a

sphere f-S
"

orthogonal to 3D"
,

and this sphere -

-

is fired pointwise by T. Let XESND?
Tun ti

- '
us

, dIh( Is ) determine an n -plane
in IR

""

through the origin. Let A be reflection
in this plane .

Then T.AM " is conformal ,
hence gen . by inversions, and fixes s (since it fixes
x and -1×5) .

i . AI , so TE loom ( D" ) .

needs more→ see addendum

Since j : D
"
→ Un

next page .

is a sphere inversion
,

Te conf ( Un) ⇒ To Troi E Conf (Dh)

hence (Eiti) is an isometry of Dh

i
. Te loom ( Ul ") .

Corollary : Isom'TD) ± Isom'The) = PSLZIIR)

Isom 'T 'D ) = loom '- ( IU ' ) E pshaw)
proof :

conf
+ ( U2) consists of Mobius transformations

U'→ U
' that fix Rufo } . lie

, maps of the form
AZ t b

T :O→ Q
, Ztczd ,

ad - be to
.

= { ( Ibd) c- Male) : ad - beto} EGLI



Addeproof-of
-

previous :

f- Toto -15
' fires x and 7×5 .

i . it fixes lsetwire
, for now) S

,
since S is

the unique sphere I to 215 and tangent
to Txs at x

.

-

'

- they two components of DMS are exchanged
f- since f maps Test -- Vrs - v

• since A fires Pnm
,
Tottori

'

fixes tf Pnm) .

Since no points of DMS are fixed, we must

have p
TfPnM ") -- Dns .

. for ye Dms

- take n - I (n - D - planes ,

III.assigns, thy yards.eent¥#
' the intersection of these

TF

÷:÷:÷÷÷¥*
Ffs! nurse /
i

. f is inversion in S
.
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Note that if T
-

- f ! i )
,

then TH) -- FF -

- Z
,

so T is trivial as a Mobius trans
.

Easy to see all others act non - trivially
in { Mobius trans

. } = GLd%z = PGLZCE) ⇐ PSL
,

If THE Rufo} for all ZE Rufo}
,
then

we must have a
,

b
,
c ,
d EIR

.
: loom'tD) Front ⇐Conf TCU ' ) ± PSLZCIR)

RMI : PGL
,
( IR) ¥ PshUR)

,
since

( 'of ,) e PG LIIR) I PSLZHR) .

( its the only non - trivial element in PGL
, 1121ps , IR )

But (
'oh ) doesn't fix U2

, so we don't include it
.

• Conf 't U 't = Conf
'' ( 2W) consist of all

Mobius transformations , so

loom 't Elson't ⇐ Conf ( Us ) -=pSLdd )
.

D
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Geodesics / \
3 it

iii. in :&::iiiBnm.and let A be reflection through P
.

X

↳ + × , p
,
ye , ,µ

.
• p

Then Ax -
- x and Av -- v

so if V is the geodesic

"

that
\

passes through X in the direction V
,
then

Ay =p ( geodesics are uniquely determined locally)
i , y = 1142 n p

For any XEIMZ and VE -1×1142 , there is
a unique plane containing X and V

.
So all

geodesics come from intersecting planes with
1M ?

Similarly for 1M
"

: geodesics are intersections

of 2-planes with 1M "
.
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a

:÷÷÷÷÷÷:÷
.'

is. "

I:3!:
"
" 'I

piano's:P .net: I
-

'

- geodesic are straight lines
.

• Poincare disk model :

i

⇒

"in:÷÷::÷¥÷: ""
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- Claim ⇒ geodesics on ID
"

are arcs

of circles perpendicular to 2132
.

Why ? :

g maps geodesics of IK
'

to semicircles

on S
'

.

Since stereographic projection
maps circles on S

'
to circles in IR '

,

Tloglr) must be an arc of a circle
, for

V a geodesic of 1K '
.

Since girl is clearly orthogonal to 21122
,

and IT is conformal and fixes 21172
,

Koger) must also be L to 21172
.

• Upper half -

space model :

j : D
'
→ U

'

is a circle inversion
,
so

it is conformal and maps circleHines to
circles Hines

i
- geodesics of Ht ' are semi - circles

perpendicular to the x-axis
,

and vertical
lines

.

hint: iain:
for totally geodesic subspaces
of same .)
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2#perbospaHI

Notation .

. from here on
,
HP will denote hyperbolic

2- space , regardless of the model used
.

Going forward we will most often use the upper half - space
model

,
and use complex coordinates :

Ht = { xtiy E E : y > 03

DII : The bounder (et Infinity) of 1112 is

Rufo} for the upper half - plane model
,
or

8D' for Poincare disk and Klein models
.

Denoted by So
,
21112

,
or It . (218ft)

One can check that the metric in the
upper half -plane

model is given by de =
dx2td
y2 ( exercise)

more precisely : given Cay ) C- Ht'
,
and VET

,#It,
we can write V -- 4¥ try # ,

or as

a vector

v -
- ( Vj;) .

Then the metric is given by

a.ws -

- in .mil": ti;) .
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'Arleigh : Let HH be a differentiable
curve in 1112

,
with te la ,

b]
.

then

µ=g! ds

writing Htt -_ ( KH , Keith , we then get

in -

-fatty;Tir÷,

d'
*,

Ed : Fix h > 0
,
and define Htt -

- It
,
h )

,
team .

HI gives IN = fo 't . ht ds = In
ie .

.
the length of V is its Euclidean length

,

scaled by th '

fin -so
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EI : Let t be a vertical line from (x. a)
to ( x. b)

, for x fixed .

i
. Htt -

- ( x
,
t)

,
tela

,
b)

Nlt ) = ( o ,
l ) b .

121=1! ds = log (Z)€
note : as a → O

,

1H → w

as b -so
,
IN → a

Ares :

In general , for a Riemannian mfld . M
, if

REM is contained in a chart with
coordinates ( x , , .

. .

.
Xn ) and metric gig ,

then

voi LR ) -- fpdrot-fpdetgi.rs de .
. - - den

Thus for IH' we have

area (R ) -_ frfzdxdy
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E-E Ideal triangle : T
-

r
, r

ti: so::% ideals . ?geodesics K
,
K
, kg #

Shown .

area ( T) -

- f
,

# dxdy

= 2 !! !÷¥tdydx=¥÷. oh
= 2.arcs in ( 2x) ⇐ ⇒fares int- D) = IT

.

- Infinite Euclidean area ,
but finite hyperbolic area !

•

soon : every ideal triangle has area Tl (all are
isometric ) .
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Lemma-2.fi Given any three distinct points
Zi , Zz , 't , ETH

'

,
there exists TE loom '- ( HP)

sit .

Tz
,
-

- o
,

and {Tz, ,Tzz } -

- { 0 , I }

proof: If necessary , switch Z
,
and Zz so

that Z
, , Zz ,

Z
,

are arranged clockwise
around 2h12 .

If no Zi =D : ( Zi
-Zz Zzlz,-ED

T : Z ↳
Z - Zz

.

z
,

?z! Zi-Zz (z. - za)
-
-

Z - Zz Z
,
- Zz

maps Z
,
↳ I

, Zz↳0 , 23MW .

det (T) = (Z ,
- Zz) ( Z ,

- Zz) ( Zz - Zz) > 0
since points are arranged clockwise

.

If Z
,
= W

,
Zz -

- o

,
or Z

,
= W

,
then

Zt> ZIZI ; zu ZEIT ; 2- ↳ ¥77
,

respectively ,
are the desired isometries .

D

Corollary : All idea triangles are isometric
,

and have area Tl

proof : take vertices to 0,1 , u by an isometry ,
then to -42.42

.

A
-

n
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Lemma 2.8 : Two distinct geodesics V
,
and Vz

in Hk either

(1) Intersect in a single point in HK
(2) Intersect in a single point of 2h12

,
or

(3) are disjoint in Hku 2h12
,
and there exists

a geodesic V, I to both V
,
and K

pref : Using the lemma
,
we may assume

that 7,101--0 and KID =p and Flo) -- I .

note : Purcell
y

gives a more

"

pity
't 've ) tf KID Elo ,

03
,

n

then 12) holds
. s

'fuk"ho%Ro . then#;÷;M
a
-

Otherwise
,
let gt be '

the geodesic oriented clockwise

that is the top half of the circleVcentered
at O with radius t

.

Note that gttv, htt .

÷¥I÷; Eaten
":L: . "

-

ha? Ifta" be

andy
,

tangent to get and K and oriented clockwise

along each .

afohfhfh.IM Ohh -- O and 0111=17
,

and Oltl is clearly

our continuous .
i

. Olt) -- Tyz for some tell ,W) .
D
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21 : hyperbolizespaced '

we will most often use the upper half - space
Model :

HP -

- { ( xtiy ,
t ) E ① x IRI t > o } ; 21113 Guy}

One can calculate the metric as the pull -back
of the Minkowski metric via Hot' to be :

de =

de - tdyztdtz
-

t
'

We have shown :

Thin 2.14 : geodesics in HP consist of vertical
Tines and semi - circles orthogonal to

LHP -

- Gulu } . Totally geodesic planes are
vertical planes and hemispheres centered
on Cl

.

Thm 2.15 : Isom (HP) is generated by inversions

in spheres orthogonal to Cl
,
and

Isomt ( HP) =P'SLala) acts on 21143 as

Mobius transformations .
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Lemma2.is : If f- C- loom '- ( HP) fixes 3 points

in 2h43
,

then f- =L .

AZ tb

proof : ⇒
= Z ⇒ CZ 't@ - a) z - b =D

If c=b=o and a -1=1
,
then this holds for all z

,

so f-=/ .

If f- lol -- x ,
then GO

,
so Z=d¥a has

g.
at most one other solution (may be a if d-a -0

,

bio)
.

CFO then fix) # o ,
and CE t (d-a) Z - b -- O has

at most 2 solutions in IC .

Corollary : If fetomtlltt 't fixes 3 points in IHZULIH'
,
then

f- =L .

Lemme 2. Bb : Given any triple of points F. Zz , Zz C- 21113
,

there exists unique f- Ebomt ( HP) sit .

f- (Zi -- O , f- ( Zz) -- I
,
fczz) -- a

proof : Existence : similar to Lemma 2.7
.

Uniqueness : If g sends Z.NO , Zz, '→l , Zito,
then f- '

og fixes Z
, ,
Zz

,
Z
, by Lemma 2.Isa

-
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Shall

-÷÷; 'Ii:c: " ie' ' sainted. Then ÷i÷÷
,

one of the following holds

1) Parabolic :

• f has exactly one fixed point in THIS
( none in AID

trace Trffl = Iz
off . . f is conjugate to ( 'of ) in Pslzlc

, for
some x E Q .

2) Elliptic :

• f has exactly two fixed points on 21113
,

and fixes pointwise the geodesic axis

between them
.

• Tr ( f) ER ,
ITrifle 2 i

• f is conjugate to Go
"

in Pshzlc
,

Ot IR .

3) Loxodromic :

• f has exactly two fixed points on 21113
,and fixes (setwire) the geodesic axis

between them
.

• Tr (f) EG or TrlftElRardfrlfH>2#
hyperbolic ( no rotation) .

• f is conjugate to fo in PSLZE
,

for some IEE
.
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pref : By Lemma 2. Isa
,
f# t ⇒ f fixes 0,1 ,

or 2 points on AH
'

.

As before ,
{Zz#d=Z ⇒ ⇐ + ( d -a) z - b -- o

If this equation has no solutions
,
then Go

and d-a =D
.

In this case ft I ⇒ bto
,

so flu) =s.

i
- f fixes exactly 1 or 2 points on 21143

.

Case 't : f fixes 1 point pe AH
'

.

• by Lemma 2. Isb
,
F g s .t

. gofog ' ( o) -- o ,
where glp) =D .

Let

soft -- Gba )
Then we have d-a =o (que f fixes Kd-ate) .

i. gofoj '= (aoba ) = (
'offa in Pee

i. Trlf ) = Trcgofog -D= ± 2

Case 2 : f fixes 2 points p , QE 2h43, and
the geodesic V from p to q is fixed pt - wise.

• again by Lemma 2. Isb
, may assume after

conjugating that p
-

- O
, q

-

- A
.
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÷:c: Ifi:: :'s '

also

i . f : z - ADI ✓

The hemisphere H formed by the

sphere centered at o of radius 1 is

orthogonal to 2
,

and e-Hat is fixed by f .
i - f CHI -- H since It is totally geodesic ,

and no other totally geodesic subspace is

L to r at x
.

i
. f fixes the unit circle in Cl

.

⇒ Iaaf -- I
,

so f- = Cit for some OEIR

f- Estel ⇒ a. d =L
,
so a = td

i . f = Gio
"

%) up to ±I
.

( Tr f) ( = €012 + e- iokf = I L 2
C- IR

#¥÷:c:÷t⇒
(or use Euler's formula)
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Case 3 : f fixes 2 points p , q e
21113

,
and

fixes setwise (but not pt . - wise) ,
the axis

from p to q .

Again , may
take p=o , q=o

As before, C=b=O
,
so f. Zi→¥

.

f- c- She ⇒ detff) -- a -d =/ ⇒ d -

- ta
,
so

f- = ( 9%) ,
a EG .

If Trcf) EIR
,
then a EIR

,
and

Xty > 2H"""Y¥¥¥
.

Otherwise
, Tif) EQ.

I

Remake : tf AER
,
the f- = lack) acts as

a dilation centered at O .

Otherwise , a -_ reio
,
so

at =L :
"

Tian)
,

so f acts as a rotation
,
followed by a dilation

.

1. e , a screw motion along V.
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Refn : An ideal tetrahedron in HP is a

tetrahedron with vertices on 2413
.
I. e
,

the convex hull of 4 points of 21113
.

Since bomt(Ht 't acts triply transitively on

THI '
, any tetrahedron is isometric to

one with vertices at 0
,
I
,
o
,
and Z

for some ZEE
. o

Let T be an ideal tetrahedron -
-
-

-

with vertices 0,1 ,
o

,
z .

* s.isn.me#eaii.ia:iiii.o
at e is arglzl . -

10 1

Definite . A turban in HI ' is a set

{ LZ.tl EM ' : teh }
for some HEIR

> o ,
or the image of such a

set under an isometry of HP ( i.e , a ball tangent
to 2143) .
A twrosphre is the boundary of a hero ball

The center of a hero ball or horosphere is its
point Tf tangency on 21h '

.
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• Since any horo sphere is isometric to a

horizontal plane , the induced metric on a

hero sphere is Euclidean
.

i . The link of a vertex of a tetrahedron
is a Euclidean triangle .
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Chapter 3 : Geometric structures on mflds .

' Polyhedraldecompositions :

Defa : A n - dimensional polyhedral gluing X
consists of a collection of polyhedra

P
, ,

.
. .

,
PK ,

and gluing maps { Yi } ; sit
.
each

Yi is a homeo - sm between cod, 'm - t faces that

maps codim - j faces to cod, 'm -j faces , such that

P,w . .
- w Rygg

,

= X

Prep-e : A 3-dimensional polyhedral gluing yields a
manifold if and only if the link of every
material vertex is homeomorphic to S2

,

non - ideal
.

and no edge is glued to its reverse
.

peroof : Exercise
.

Def -1 : If a polyhedral gluing gives a
' mftd M

,

then we 'll say M has

.

a (topological )
polyhedral decomposition

@
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Def : A geometric polyhedral decomposition of a
mfld M is a topological polyhedral decamp - n
5. t - LD Each polyhedron has a metric lire

, they're embedded in

gluing maps are isometries a commonspagyric
(3) the gluing induces a complete, smooth metric

E.vn?ergescau:hyms.egvenceinmJonMLemmai
If M has a polyhedral decomposition into

hyperbolic polyhedra such that gluing maps are

isometries
,
Then the gluing inducer a smooth metric

on M ⇐ the nbhd
. of each point of M

( in the quotient topology) is isometric to a ball
in Hln

.

proof : immediate

- te
,

in 2 - dimensions
, angles around a vertex sum to 24

.

b

EI : Genus 2 - surface ( topological) ⇒ her a

← I tb Seiji:d

,j¥
EI Euclidean Torus :

- ¥7
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noni Affine torus : things go wrong !

/ • angle sum is OK
,
but

→

gluing is not by isometries
.

- Geometric structures
-

Definition 3.3 : Let X be a manifold ,
and

let G( be a

ggovp (of
real analytic diffeomorphisms

.

)
acting transitively on X

.

We say that
M has a (G#-ste if V x EM

,
7

a chat (U , y ) ,
4 : tf → YIU) EX , and

if two charts ( U, y) and (V, Y) overlap
,

then
V -

- you
"

: Ylunv ) → y (un v)

restricts to an element of G on connected
components of Uluru) .

non -EI : . (Cle, IR
" ) - structure : smooth manifolds .

" smooth structure
"

tamales : . ( Isom (EY
,
IE ' ) - structure :

F'Ta
#
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• ( AffHRT ,
R2) - structure

"affine

,

: Foti! III's " s .

• ( Iron (HM
,
Ht) - structure :

"hyperbolic structure "

Thrice -punctured sphere :

Genus 2 surface :

" total angle total.fi#eatototf!:sleg.I
,

894=2 "
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Remade : If M is obtained as a gluing of hyperbolic
polyhedra by isometries

,
and the induced metric

on M is smooth
,

then we get a (Hln, bomlltlh)) -
structure : isometric balls in M lift via the

quotient map to balls in 1H
"

,
and transition maps

are gluing isometries
.

Completetrucks :( 3. 2)

Q : When does a gluing of hyp - e polyhedra yield
a complete metric ?

• no ideal vertex w> always .

otherwise
,

. . -

(3.2-1) Developing _Map¥plt .

Let M be a (G. X) - manifold , and let {(Ua
,

be coordinate charts for M .

×
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Let (U ,
6)

,
( Vix) be charts

,

yeunv . M

r -- yay
"
: Nung → yfunv ) un

agrees in a nbhd
. of y Ly LY

with an element of G
, by

the def -n of a (G. X) - structure .

Let 841 be this element ÷E
of G

. Define a map 41mV)f Uluru)

q : UN→ X by

⑤ Cx) = (x) if XEU

My)Yu ) if XEV Y

IEnuii.is. tidier
all XEUN

,
so OI is

well defined. fy H
• If UN is not

in:÷::Eu:c.
'

-
un

KUN) you
" 4am)
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• We could ensure that UN is connected by
refining the atlas

,
but we would still run

into problems going forward , as we extend

OI with more charts .

Solution : work in the universal cover .

Let a :[o , D - M be a path representing a
point GI e NT

.

Let O -- to < t ,
c

-
- - Ctn =/ ,

( Ui , 4; )
satisfy

x(Cti , titis) E Ui . for E- 0,1 , . . . ,n- I

Let Xi = x( ti) ,
so that Xo is the basepoint .

Note that Xi Ellie ,

n Ui .

Let Vin
,
i
= 4h04.

"

. tie , ,i restricts to some

iiG on the connected component

of 4. (Ui . ,nUi ) containing yi=4iKi)(
Tisa :÷Ita¥m%ahat:÷;¥iif:c:

"Ihs
.

definedness of the MA Kini #lui
.,nUi

'



43
x :[0,13 → M

,
at;) -- Xi

we will extend Yo along d
.

"¥:c:÷÷÷÷÷:÷÷:÷÷÷:÷: n

x U2

since Klatt . ) ) -7,044, Kit, .

-

-

OI
,
is well-defined. Un- i µ

→ Un
Extend inductively lo 141
Ii : Latin )- X by down Yoko,
setting
-

.*.
-O

et
, faith that;] / raw x

Kim.im#i.i.ikiYiKltDtElti.titDJgo.,ui/id
Since Yi . ,KltiD=K ,,iKil4ikttiD ,

we have by induction that

⑤ i. iltitrcxikdnl . - -Kanai.iq
.
.cat;D i4×

=ro, kik.dk)
" -Kini-Hittin .it#liHltiD

,
so II. It) is well -defined.
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At the Cn - Dth step ,
we get

'

a map

In ,
:[0,13 → x

In fact , for some nbhd U of all ) , the

composition defining En , gives a map

AT, : U → X

Aught -- Knuth.dk) -
- - thangka-Hln,

Exercise show that the definition of Egg does not
depend on

• choice of a rep - ng [a ]
a choice of ti

.

IZ '

qui , y ;) for izl• choice of charts

DII : The developing map D :X → X is the map

D. (Ks) - Ey,KID)
-

- Yo , KH.dk - - rnymkn-thln.HN)

• Note : in a nbhd of G) ENT , we have

D= #ago -11 ,
where IT : NT → M

.

since IT (CA) -- du) .
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PIP : The developing map
D-- Fi → X

satisfies :

1) For fixed base point Xo and initial chart
( Uo , yo ) ,

D is well - defined, independent
of all other choices

2) D is a local diffeo- sm

s) change of base point and initial chart

givgecsga, map equal to god for some

proof : d) Exercise

(2) follows from a) plus the fact that
the tie , ,ilXi) and Yn

. ,
are local

differ , and the topology on NT
.

(3) Exercise .

Hoy Mep :

Let G) ENT be an element of IT
,
( M) ( i.e., its

a closed loop in M) .

Then tow : U - X where U is a nbhd
. of

the basepoint Xo .
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Thus
, Yo and Ey, are both charts in a

nbhd
. of Xo , so they differ in a nbhd. of

Xo by an element of G
. Define gun,

E G

by
Iq, -- Seato

M
G

LIES DCKBD

=gc*oDKP)

~ DX peed
M

i' is:#it::*:*
.
:*

.
=DKID

For any Cp) ENT we have : X

Dota,kpD=DlkpD=g↳( Dept) =g↳oDKpD ,
so

Dota = guy OD for all G) ETHMI .



E Euclidean Torus t Affine Torus

M

in

e.

y Lotus
Hia Ho x

⇒ """

ID Fina

"'

a
:÷÷i÷:
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For G)
, Cp) ETI , (M) ,

we have

gap;D
= Doty = Do -4,04 =(g↳oD)oTcp,

-

=g↳o( Do -1cg)
=

gyyog.gg OD
i

.

gyp,
=

Geno Gcp
i
.
The map p : T.CM ) → G defined by

plan) = guy
is a group homomorphism

Def : The ett
guy

is the holy of KT
.

The

group homomorphism P is called the hotonomy
of M

.

Its image is the heloynomy griep
of M

.

Exercise : changing the basepoint Xo and initial chart
( Uo , yo ) in the definition of G changes
PLTHLM) ) by conjugation in A .
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Refa : M is a complete LG¥nIfolI
if D '

- Fi → X is a covering map .

• If M is complete and X is simply
connected

,
then D : A→ X is a homeo - sm

,

so we can identify X with Th
.

Prep : If G is a group of real analytic differ .

of a simply connected space X ,
and M is a

complete ( G. x ) -mfld ,
then ME

where r is the holonomy group of MN?
proof . M complete and X simply connected

⇒ D a home o - Sm ,
so

ga,
= Do TwoD

"

⇒ p : cars ga,
is an iso - sm onto r

guy
-

- g ⇒ Data,oD"=DoTqsjD
"

⇒ Ty,
-

- Tgs, ⇒ ca -

- Cp]

i . r# CM )
,
so ME %

, ,nf Fr .
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Perp i Let G be a Lie
group acting analytically and

transitively on a mftd X
,

set
.

the stabilizer Gx
of X is compact for some ( hence all) XEX.

Then

X admits a G - invariant metric
,
and every closed

( G. x) - mftd is complete .

proof : Thurston Prop 3.4.10 t Lemma 3.4.11

Thm3 i Let M be an n -mfld with a
"

(G. x) - structure , where G acts

transitively on X
,
and X admits a

complete G - invariant metric
.

Then
the following are equivalent :

la) M is complete as a (G. X) -mfld.

(b) For some E >0, every closed E-ball in M
is compact .

(c) For
every aso , every closed a -ball in

M is compact

(d) There is some family of compact subsets
St of M

, for tf Rt , s
-
t
.

Uteri
.

't = M and

Sta contains a nbhd of radius a about St

(e) M is complete as a metric space .

.
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~

proof : (a) ⇒ (b) In general, for a cover M

p : Y → Z between Riemannian mflds \
It . p preserves the metric

,
we have l M

✓ a

p( Beep) = Bypass) X

since distances are defined in terms of
paths , and path lift .

i
- E-balls compact in Y ⇐ E -ball compact in Z

choose a closed E -ball in X that is

compact ; since G acts transitively ,
this E

works for all x E X
.

⇒ Cb) holds for NT ⇒ ( b) holds for M
.

(since D :nT→x is (since A → M is
a covering map) a covering map )

(b) ⇒ (c) Induction : suppose all closed a - balls are

compact for some AZE .

Then Dale ) can be

covered w/ finitely many Ek balls
,

and so

Date,zCX) can be covered w/ finitely many E -balls
,

which are compact . i - Bateau) is compact .

(c) ⇒ Ld) Let St be the ball of radius t about a
fixed point .

d) ⇒ Ce ) Any Cauchy sequence is contained in some

St , so it converges .
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(e) ⇒ (a) suppose M is metrically complete .

je
s

. M is metrically complete (w/ induced metric)
is

since any Cauchy sequence in A projects
s to one in M

. Since M is complete the

§ sequence has a limit X
,

and x has a

+ p, compact hbhd
. that lifts homeomorphically to NT

o

E B nets.

: D : NT → X is a covering map .

'

ist
= is For a EX

,
consider D-

'

( x) ENT . If D-
'

677/0S t
I is discrete

,
we can find Go out

.
the open

& " E - balls centered at the elles
. of D-tx) are disjoint,

EE and map homeomorphically to a ball about x
.

O §
It If D-

'

Kitto is not discrete
,
it contains a CauchyP o

• § sequence { yn } .

Since NT is complete yn → y
=3 for some YEN .

since Dlyn ) -- X t n
,

F - Dap -- x .
But the D cannot be a local

8 home o - sm at y ,
a contradiction

.

i
. D is

j
' t

→ a covering map onto its image . n.to .
Dtm) -- X

.

O

z tf D-
'

k) =p
,

the let Xo EX be sit .

D-
'

Ko) to .
Let L be a path from

Xo to X
. Let

.

to = sup { tfco.DIxlco.to'D doesn't lift?
⇒ d(Co , to) lifts to M

. Completeness .×

of Tn ⇒ x( Co, to]) lifts
, :#to

a contradiction
. x

i . D : NT → X is onto .
D
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3.2.2 Completeness of hyperbolic polygonal givings .

Recall : A gluing of hyp - c polygons has a hyp - c
structure if the angle rum at each finite vertex
is 24

.

° Completeness can only fail at ideal vertices
-of A

↳ ideal vertex : equivalence
class of polygon vertices
under gluing equivalence

• Let u be an ideal vertex of M .

Let Po be a

polygon with vertex Vo in the class of V. Lift Po
to a polygon pi. in HP ,

with v lifting to a
, another vertex at O

,

and all other vertices on IR>o .

- Let to be a point on the left edge of Po (when facing V) ,
and let t be a loop based at x and going around
V counterclockwise .

Let to be the lift of Xo in Io .

' As we develop along A ,
we add polygons P

, , Pz , . . .

,
Pn with

vertices at a
Dead !-

P ,

" IB
.

. . pn
- N
o Y

h
I
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.

- Tm developing image DECA) of G) ENT is some

point on the right edge of Pn , which has endpts .

y and a

• since the right edge of Pn glues to the left edge
of Po

, guy must be a hyperbolic isometry

that takes o to y and XT to DM)
.

Such
gun,

takes the horouyde through Io to the

one through DHA) .

Let dlv ) be the distance between these two

horocycles.pt#-nI5-Let M be a surface with hyp - c
structure obtained by gluing hyperbolic polygons .

Then the metric on M is complete
⇒ das -- o for each ideal vertex V.

proof : stay tuned
.
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Eixample Thrice -punctured sphere
V
-

€¥€¥.
Vo Y

W

tenet
' choose horo cycles hw

, ho ,
h
,

about o
, 1,0 .

'

g is the holonomy about the loop a around the
vertex lifted to o

, gap, the holonomy about the

vertex lifted to 1
.

• complete structure ⇒ g↳(he) -- ha
-

g an isometry ⇒ l
,

-

- glh ) -- k ,
so ho and he

have the same Euclidean diameter
.

- similarly , the holonomy gap, maps ho to hx
,

so I , = ly

i
.
x -- 2

,

and gun,
- ( '

o

') .



~
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thorn : There is a unique complete hyperbolic structure
on the 3-punctured sphere .

A fundamental
region for the structure is given by two ideal

triangles with vertices 0
,
I
,
o and 1,2, o, resp .

Incomplete ¥1 : For completeness we need
11=2 . What if we take x= 312 ?

[
non -convergentit:÷::
I

0 ,
312

- choose hw at height 1
,
and ho ,

h
, of ( Euclidean)

diameter 1
.

'

may assume horoball at 312 has diameter < I (otherwise
consider a

" ) . If the cusp at l is complete , the horn ball at
312 Will be tangent to h

, .
Either way , gyylAuB) is

narrower than AUB
.

- continue → triangles limit to a vertical geodesic V
(why do they converge ? geometric series) .

- can complete the structure by adding limit points . In HT
this corresponds to adding t (and other translated to the
duel

. image .
in M

, we add a geodesic loop (quotient '
of 8) .



÷

.
.

!
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Rroofef Iop -3.15 : Suppose dm to . Let h be

a horocycle about V
,
and take a sequence of points

along h
,

one for each edge crossed . This is a

Cauchy sequence that does not converge .

• Now suppose dat -- O for all ideal
vertices v .

For each vertex Vi , let hilt) be the open
horoball about Vi of Euclidean radius t

.

Let St -- NYU ;
hilts)

Then Ust = M
,
each St is

,

compact, and

Etna
.

mins: . a.
radius

⇒ completeness dlx
, ,
idly

,



58

Another point of view : ( scaling ,
rotation, translation

S
'
= lklv) hasarid :

- For each triangle T with ideal vertex at V
,

INN n T has a Euclidean structure coming
from identification with the hororphere n - ing T .

• If we go around V once
, returning the starting

triangle T
,
we'll be in a horusphere that differs

from starting horosphere by dirt .

" the map between these is a similarity : (
ed!
""

god

data , b) = high -a) = dm

\
"

dezlahtb - a = edm
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In a - dimensions
,
the picture is similar :

* in each polyhedron P with a vertex at V
,

Pnlklv )
has a Euclidean structure from the hero sphere cross

section
.

• Go around a loop in lklv )
,

come back to P
,
in

a hero sphere that differs from the starting one
by a similarity .

Theorem Let M be an n - mfld with hyperbolic
It cure obtained by
Then TFAE :

Shins hyperbolic polyhedra .

(a) M is complete

(b) For each ideal vertex V
,
the holonomy of IND

consists of Euclidean isometries

(c) For each ideal vertex v
,

ARCH is complete
as a similarity mfld .
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peroof : (b) ⇒ la) If holonomic are Euclidean isometries
,

then horosphere cross section match up if we

go around a loop in lklv) .
So local cross

sections glue up the give a global cross - section
,

a hero ball nbhd . of V
. Mil horoball nbhds

.} is
compact .

Delete smaller e smaller howball nbhds
.

to get an exhaustive family St of compact sets,
apply 3.4.15 (d) ⇒ (e)

(a) ⇒ (b) If some tudou.my around a loop a in lakhs
is a contraction (if not an isometry must be a

contraction in one direction or the other) ,
then

every time we go around v along a hororphere,
the distance decreases ( exponentially ,

in fact) , so

we get a Cauchy sequence that does not

converge : foster route
•
.

note :

(b)⇒ ( c) f- this distance
• is du) at÷÷÷÷i÷÷÷÷÷÷÷:÷÷÷:
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(c) ⇒ ( b) :

lklv) complete
⇒ can identify E " with %

,

and holonomy
group of lklv) with deck transformations .
If some holonomy g is a contraction

,
then g has a

fixed pt . x , and the orbit of g contains pts . limiting
to X

.

Thus p
- ' ( pus) is not discrete

,
so p

'

- Eh → that
cannot be a cover

.
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Chapter 4 : Hyperbolic structures e Triangulations

Defa : Let M be a 3-mfld .
• A (topological) ideal triangulation is a

topological polyhedral decomposition such that
all vertices are ideal and all polyhedra
are tetrahedra

.

• A geometric ideal triangulation is a

topological ideal triangulation that is a

geometric polyhedral decomposition .

- Given an
,

ideal topological polyhedral decomposition ,
we can easily get an ideal triangulation .
- cut each polyhedron into tetrahedra .

- If cutting choices don't match between two

glued polyhedral faces , add ''flat" tetrahedra to

interpolate :

¥:*:*9
add
tet .
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The above method does not work for geometric
ideal triangulations .

Open Q : Does every hyperbolic 3-mfld admit
a geometric ideal triangulation

•

see Purcell 4. I
-
I for an extended example showing

how to get a triangulation for a knot

complement using the polyhedral decomposition .

4.2 Edge gluing equation

Let t be a hyperbolic ideal tetrahedron

• Let e be an edge of T .

* Can embed T in HP so that the endpts .

of e are at o and a
,
and the other

two vertices are at l and Z
, for some ZEE

with Retz) 20 .

. we'll say a tetrahedron as described above is in

zdwdpositi@w_r.t . the edge

Def : The edge invariant Zle) of e is the

complex number Z as described above
.
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Rink: If Kettle) -- O or if Zte) =D
,
then

we say that T is :

• degenerate if 2- ⇐ fo , 1,0 }
• flat if Z # {0,13

Lemmy : Let t be a ideal tetrahedron
with edge e

, ,
in standard position

iv. r .
t

.
e

, .
Then :

(1) The edge ez with vertices x and I
has edge invariant

2- ( ez) =
I
l - Zle,)

(2) Tm edge e, with vertices x and
Heil has edge invariant

Ece, ) = ZCe#
Zee ,)

③ The edge ei opposite ei has edge
invariant zcei) .

• Thus
,
Z 2- led -Zlez)= - I

,
I - Hei) -12-(45-49)=0
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lez
Prod : Set Z = Zte

,) .

-

(1) Let T : wins ez
Z - l l

"

:÷÷÷÷."
.

'

. Z lez) = TCO) = ÷z Zee,)

(2) Let T : Wrs 7£22
T

the T fixes w
,
and maps

2- too
,
Ots l

,

and its LIII
i . Zed = Th) = Zzt .

W

3) For e
, ( others similar) .

,
Let t be the unique -

- l
'

,

geodesic meeting ez and ei .
Rotation by Tl about V is I

an isometry taking Ohl , IHO,
I

÷::÷:
¥I
! 7th .

I
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Now consider a gluing of ideal tetrahedra T
, .

. . .

, Tk
around an edge e

.

- Let e ; be the edge of Ti glued to e
.

• Put T
,
in standard position w.r.li

. e
, ,
and

let F
,

be the face of T
,
with vertices

0
,
O
,
Zte ,

)
.

• F
, glues to some face F

'

in a tetrahedron TL with

edge ee glued to e .
First put Tz in standard

position writ
. ez

,
then apply an isometry of IH

'

fixing O and a and taking It 2- le
,
)
.
This takes

the fourth vertex of Tz to 2- let Hee)T.ie::÷:.
• continue in this way , attaching Ty , . - - Tk ,

jetted
"

E' T
,

Ts

ii. iii. iii.÷:
'
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Theovem47_ ( Edge Gluing Equations) : Let M
' admit a

topological ideal triangulation it .
each tetrahedron has

a hyperbolic structure and gluing maps are isometries .

The hyp - c structures on the tetrahedra induce a

hyperbolic structure on M if and only if for
each edge e of M

" eds: I'ihssnftziei, = , Ea.gl#eip=za ] '⇐¥TI⇒
with product(sum over all edges gluing to ei .

Proof : hyp- c structure on tetrahedra induces hyp - c
structure on M ⇐ every point in M has a

nbhd isometric to a ball in HP
. If a point

on a edge has a ball nbhd
, then the angle

around the edge must be 21T
,

so [argue ;D - 21T
.

Also
,
there cannot be a non - trivial translation

as we move around the edge ,
i.e

.

,
the holonowy

Should be trivial
,
i.e .

, faces should match up .

⇒ IT 2- Lei ) =L
Converse is clear

.

[ Arghezi) FLA

< a gneiss't:b:&:i €¥¥e¥
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T
°

Its

95 o
a :÷÷÷÷: :÷:÷÷÷:*.
into a pair of ideal tetrahedra

. zz
Zz

⇒

Goal : Find edge i'nuts. so that °

the gluing of tetrahedra is
T,

o

geometric- i.e
,

so that the ruts

gluing induces a complete hyp - c WI →

metric on 5 -K '

• Let Zi and wi be edge ,
uh

invts
. for the tetrahedra

,
i -12,3 .

W , o

• Edge gluing equations :

* : zfzzwpw , =L ; Fo : Zf Zzwiwz = I

• set Z=Z, ,
w -- W

, ,
and recall that

Z
,
= -2¥ ; w,

= WWI
so for → we get Z2(Z¥)w2(WWI) = I

⇒ zlz -Dwlw - D= I #

⇒ z =
I ±-It 411Wh - D)
-

2
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Rmk : easy the check that the equation for Io
gives the same result

.

need : lmfz) > O
,

so need It w¥i < 0 .

This
holds for

we El{xtiyl x -- E
, y > EE }

÷÷¥÷÷¥€: :*:
of corners of tetrahedra , :b >

which fit together as follows : °tz-¥
•

W , Wg•@ Wz •

W, Wzs• Wz W
,

•

°

'
.

A wz b wz C
wzz
,

d
z ,w, § 8!

"Tinian.

x
' holonomies of a, B are translations w ' o

⇒
⇒ wi

'

Zuri
'

Zzwi
'

Zzwj
' =/ and Wizz

'
=/
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⇒ ⇐?=i and Ez 't

⇐ ( # ZI ' E) 2- ( ¥5 -- I and what

⇒ w = Z and Z(l-z
asian!"mittimus > o

,

^

Im (Z) > O .

by (f)
,

z =
I -1741cm
==i+E

= ltTT = ¥5
i
.
z -

- w = tztfzi

.

'

.
The fig - 8 knot complement has a vneiqve complete
structure

.



7- I
4:3 : Completeness Egvatims :

Def-1 : Let it be a 3-mfld with torus boundary
components .

Let M -- int ( Th) be the interior
.

a cusp (or Cep neighborhood) of M is a closed
nbhd

. of a component of 7Th in M
.

A Isp
C Lor Eep torus) is a bdy Component
of Mtcusps } . We say M is a hefted . with
tow weeps. .

- Mein
M

wins 'The:#

Rink : If M
'

is a ( loom '-CHP)
,
Hp) -mfld

with torus cusps , then the metric on M
is complete ⇐ the hyp - c structure on M
induces a Euclidean structure on the cusp tori

.

( our proof was in the context of polyhedral gluing,
but can be adapted) .

If M
'

is a mfld with torrs cusps , then a

(taonpo logical ideal triangulation of M induces

cusp triton of each cusp to- us
.
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Definition : Let M be a 3-mfld obtained
as a gluing of hyp - c tetrahedra

,
and let

T be a cusp torus of M .

Let G) C- IT
,
LT)

so that x is a loop on T in the class of
KT . Orient a on T and homotope so that
x is a normal curve with respect
to the cusp triangulation (i.e, A ) .

Let

Z
, , .

. . , ZK be the edge invt
. of the corner

of triangles cut of by a , and let Ei =/
( resp . G. =-D if Zi is to the left (resp . right ) .

of x . Define

Hua ) = Zi
"

e.g :

we:::¥% " :::
. ¥A.

D : → HP
,
then

Hkd ) -- offs ftp.D-zizitzszitzs-IZZI '

Ihop-n4# (completeness equations) : Let M be a 3-mfld
obtained by gluing ideal hype tetrahedra , it . the edge
gluing equations are satisfied .

Let IT
,

. . . .TK be

cusp tori of M
,
and let ai , Bi generate Tl

,
LT;) .

If HKaiD=HKpiD=I for it , . . .,k ,
then the

triangulation is geometric and induces a complete
structure on M

.

proof : Exercise ( recall fig-8 example) .
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6.2 : Completion of Incomplete structures
. (we 'll come back to chs)

' For the fig - 8
,

t - a parameter family of incomplete
structures - how do we make sense of
completion of such structures?

- In 2 - din care
, adjoin a loop consisting of limit pts .

Let M
'

be a mfld with torus cusps, and incomplete
• hyperbolic structure

.
Let C be a cusp , and let T

=-D be a cusp torus for C ( i.e, a .
cross - section ) .

5 g M not complete ⇒ similarity structure on Thet

§ ±
Euclidean (for some cusp , let's assume it's T) .

} E
ET
SE Let d

, p generate T.IT ) ⇐ 21×21, and let g,
and gp

EE fiftieth: ofg.danda.ge?comnhItti .'

g.

§ I
8

' Exercise: If
'

g ,
h C- loom '-LHP) commute and

are not both order-2
,

then either

( D g and h are parabolic with a common fixed point , or
(2) g

and h are loxodromic (elliptic e have the same axis
.

In case ID
, g. and g , are translations

,
so the cusp

is complete .

So we must have (2) .

We may assume the axis of g, and gp is the

geodesic from o to a
.
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÷:¥¥÷÷÷÷÷÷÷÷÷÷¥÷
÷÷:÷:: :::÷÷÷:: :c:""
Recall

,
in 2 -dins :

¥¥¥¥¥±



75

We have : NK) = T x [0,1)
.

Since Lga , g,
> = Tl

,
IT)

, they must fix the

developing image of T in HP
.

It is easy to

see that ga , gp cannot both be elliptic , so

the only Zd subspaces fixed by Lga , go> are

Eigenvalues based at o
.

nut . bananas

It follows that the developing image of Nlc) is

a solid cone based at 0
,
minus the geodesic

% .
The boundary of this cone is the

developing image of T.

DINTCD Test }

DIE
DHI -

To complete the developing
-0 image of Nlc) , we

/ g.
demi! 7. against:* .

Thus to complete NLC)
,
we'll need to

adjoin the quotient of top by Lga ,gp >
to Nlc) .
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stwtonboardprojectorscreenbloeks

Plop -26.4 : The completion of NCC) is either

homeomorphic to the 1 - point compactification
of NLC) obtained by crushing Tea} to a

point , or it is homeo - c to a solid
torus obtained by attaching a solid torus
to NLC) along -1×213 .

proefi Let Z be a point on Vo
,•

.

Then
the orbit of Z under Lg , .gg ) is either

a discrete subset of T or
0,6 1

a dense subset
.

If the orbit of Z is dense
,
then the

completion is the l -point compactification ,
which is not a mfld . (exercise) .

If the orbit of Z is discrete
,

then the

quotient of row is a closed curve whose

length is the distance between orbit pts .

closed

Let NCI be the completion . Ahrnbhd
.

of the attached geodesic is a solid torus
,

and removing this gives a mfld homeo - c
to NLC) .

Thus NET is obtained

by attaching a solid torus along Tell } .
IT
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Rink : The hdonomies g , and gp are holonomic
of a and p writ . Dim → Ht'

. If we
.

Consider L and p writ . D '

- F → IR'
,
then

their holonomic , ha and hp will be similarities
,

and trmlate non - trivially . More precisely ,
'

if
he is the map Ztsreioztb

,
then g ,

is 2-↳ reioz
.

'

Def Let C be the solid cone about the

geodesic Vo
, .

from 0 to w with vertex at o
.

Let E be the infinite cyclic branched
cover of E branched along to,o , and let

Ca be the quotient of E by a rotation

by an angle x
.

A nbhd
. of a point on top in Ea is

called a hyperbolic cons, with cone angle A.

A 3-dim . hype cone mfId is a mfld M
sit

.
each point has a nbhd

. isometric to either
a ball in 1H ' or a hyp - c cone .

The points with cone nbhds
. form a geodesic

link in M
,
and are called the singular locus .
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Let I = City
,
and let I -- Evo

,
•

be the universal cover of I .

Thus I =D ( NLT)) and 2I= DLF)
,
and

I = NTC) .
=

The developing map D : NTC) → I
~

→ t
lifts 10 I

,
and for aETI.LT) D -

there w.isnta.nu?EEigted.zh.olonomy .

.

-

- t
ga NLT) I

show Why lift to I ? We want to be able to

similarity consider elements of IT, (T) that rotate about
structure to

,y by more than 2h . ga only sees rotation

visualization Mod 21T
..

'÷:÷÷::÷÷÷÷÷÷÷÷÷:÷÷:¥÷::÷.rotation .

Note : If 0 ELF and ga : zit reitz
,

then ga -- loglga) - riot .

• In purcell , Ty, is denoted LK) beep -90)
,

and is called the complex length of a .

In Thurston gig is denoted HK)
.

Iim sorry .
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Paper 6.8 : When the completion NT of M
is a mfld .

,
it is a hype cone mfld , and

the singular locus consists of geodesics '

attached in the completion .

Hi Let T
,
NCC)

, % ,
be as before .

define a homomorphism Y : IT
,
(T) → IR

> o

by Vrs Reta)
,

where Tyr is

the holonomy of r writ
.

5 : NTC ) - I
.

Note that Riga) is the translation distance

of Ja aliens to,o .

Let a
, generate kerf

,
and let Az

Show various be sit . Iz generates Till)/kery .

similarity d
structure Let dat ith -

- GI .

Then s : dts-d.dz
examples . is a homo - sm satisfying 405=1 , so

what is the the sequence I - Kerce→ IT, it → 1mV→ l splits
kernel ? image?

i
. q, ( Tye kery × Im y E- Kerf ×

'T't
ry( Yi: Ethan:c.im?:is:ini:giiaea::...s.A- holonomyrep.ru

acts by rotation
,
and Gaz acts by translation

and rotation along Vox .
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tdime fryarts Record

IT
, (T) = Kerl x Tht ery

"

'

÷÷:÷÷
.

¥.I
s rise,

bottom

i
- M is a cone mfld , and cone angle at

completion points is lm(gift ,
core geodesic

length is Reeg.! .

D
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6.3 Hyperbolic Dehn filling space
DI i Let M be a mfld with torus bdy
Component T.

Let µ ,

7 be a basis

for H
,
IT ;D) .

Let ( o , Gt ( p , g) C- 2×21
.

• If gcdlp , g) =L :
this is a

"

slope " on T

we obtain the Lp ,q) Dehn filling of M

along T by giving
-

a-solid-to.us IT to

T so that the meridian of Tt glues
to the curve put qt on T

.

• If god ( p , g) =D * I:#
"
Dehn filling coefficients

"

Let Id be the d - fold cyclic quotient of
IT by the symmetry that fixes the core

curve of Tl, and let Md be the image of
the meridian of Tt under this quotient .
We obtain the fp.iq#rbiIhd)DehefiIieg of
M along T be gluing Td to M along
T so that and gives to Pant Ida .

• Note that when gcdlp , g) =D ,
the Lp ,q)

( orbifold ) Dehn filling is homeomorphic to
the ( Ed , Ga) Dehn filling ( but net isometric) .

# pptqt

£ n.
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Rtm : If M -

- SIL is a link complement ,
then there is a canonical choice of basis
on each torus Cup T: choose µ ↳

to

be a meridian of the link components corresponding
to T

,
and choose X to be the homological

longitude of T ( this is the body of the homo logically
non - trivial surface in 831kt) .

For M a mfld with cusps C , , .
. . ,Ck

,
denote

by Mlp
, .gl , . . . . casing

the mfld obtained by

( pi , qi) Dehn filling of the cusp Ci , i'- I , . -

,
K

.

If (pi ,qi) is replaced by x , then the cusp is

unfilled .
So M - Ma

,
. . .,o .

awhile . . . :

Tim (Wallace ' 60
,
Lickerish -62) : Let M be a closed

,

orientable 3- mfld. Then M is obtained by
Dehn filling the complement of a link in S3

.

-As defined ,
Dehn filling is a topological operation .

By considering completion of hyp- c structures
,
we

can understand Dehn filling geometrically .



(Assume that the completion is met t.pt . compactification) .
83

Definition : Given a basis µ ,
t ETI , IT) for a

cusp lows T
,
the generalized Dehn

filling coefficients (a ,
b) for NT are

solutions to the equation

Agm tbg , = ZITI

r

or La , b) = x if T is complete .

• In general , a ,bElR ,
and aµtbt EH ,

(T, IR )

• If (a. b) E 21×21 are primitive ( gcdla ,
b) =D

,

then

ay tbh generates Ker (at> Rectal) ,=ker4
so this filling corresponds to a completion
that gives a mfld ,

i.e
,
the cone angle

at the completion points in LTI .

¥¥¥÷÷÷:Core curve has length Re ( Fyn)
cone angle = lmlg.fm?=2Tl
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÷÷÷÷÷÷÷÷.
>

cone angle =lm(gigs!

← If Ca
,
b) E 21×21 and god (a. b) =D ,

then

f-M t bat generates Kerry

and the filling corresponds to a completion
that gives an orbifold with cone angle
2ft at completion points.T cone mfld . w/

cone angle 24k , K£21 .

"⇒

TILT)/ker4 = (rt )
Accord = Re ( gin)

cone angle = Im (53µA)
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More generally :

• If la
,
b) C- QXQ

,
then if f- = Iq

with p,qEZ , gcdcp , E) =L ,
then if

d-- fat ,
the cone angle is 2nd

.

When d > I
,
this does not correspond to a Dehn

filling (with our def -n) . (though one could allow gluing
in cyclic branched cover of solid Iori

.
. .)

< Kerf in: I¥¥¥f" "".. 'ma F -- ¥
,

=

-tf -- F

Faf Ye -- 3
a =3 b= - Iz
Ker y =L6µ - t )

⇒ cone angle = 6T,
Ttftllkery = {rt )

cone angle = 41Tleave) = Relgis) . lccore) = Reign) .

• If a or b EIR : Result is a cone mfld
with cone angle Im ( ga) ,

where 4
, generates

kerf
or surgery

- this is
"generalized Dehn filling

"

,
but is

not Dehn filling by our def - n .
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Canonical basis
86

• Our approach so far has been to start with

a hyp - e structure on a triangulated mfld M
,

and understand how completion of the
structure can be understood as Dehn filling .

Lets turn this around : start with a topological
3-mfld M w/ torus cusps and consider the

(p,q) - Dehn filling of M
.

When does Mera,
admit a complete hyp - c structure ?

We have seen :

A : when edge eqns .
and satisfied and

the equation pgnntqg
,

-

- Zai is

a satisfied .

Can we say anything more general ?
First

,
an extremely important theorem :

Theorem (Morton - Prasad rigidity ) : If M
,
and Me

are complete hyperbolic n - mflds with

finite volume and ns.3
,

then any
isomorphism Y : -11,1M .

)→ IT
,
(Md is realized

by a unique isometry g :M ,
→ Mz live

, g. *
-

- 4) .

Furthermore
, letting r, ⇐ HIM ,) ,

R ETIMz) be
the holonomy groups , Fqebomlltl

') such that

Ucr) = qoroq
" for all ten ,

( i.e.
,
the isomorphism he is realized by conjugation) .

proof : see Bep ,
Ratcliffe - Ob
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And on a related note :

ThfGorEe) : tf k, and Kc are knots

with homer- c complements , then the knots are isotopic
,

up to reflection .

Ref : Let M be a 3-mfld with cusp
torus T.

The subset of Biu So}
consisting of Dehn filling coefficients of
hyp - c structures on M is called the

hype Dehn filling space of M
,
where o

corresponds to the complete structure on M
,

if it exist's
. Frigidity

The (Thurston's hyp -c Dehn filling thin) : Let M be
a 3-mfld with a single torus cusp T sit

.

M admits a complete hyp - c structure
.

Then hyp - c Dehn filling space contains an open
nbhd

. of a in IR
'

u{a } .

More generally , if M has cusps T, . . . . .TK
,

and M admits a complete hyp - c structure , then

hyp - c Dehn filling space for M contains an

open nbhd
. of a for each Ti .

( Thurston ' 79 (sketch) , Neumann -Zagier
'85

,
Benedetti - Petronio

'

9L
,

Petronio - Ponti '00
,

Hodgson -Kerkhoff '05

Ceffectiuised)
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Definition : A Dehn filling of a hyp - c mftd that does
net admit a (complete) hyp - c metric is called

exceptional .

Corky : Let M be a mfld with a single
torus cusp sit

.

M admits a complete
hyp - c structure . Then M has finitely many
exceptional fillings (nan - generalized) .

Corollary : Let M be a mfld with torus cusps
IT , -

. .

,
Tia .

For each Ti ,
exclude finitely

many fillings .

The remaining Dehn fillings yield
mflds with complete hyp - c structures

.

Note : The second corollary excludes infinitely many
fillings .

Consequence : " Most " Dehn fillings of hyp - c mflds
are hyp - c .

- Wallace - Lickerish ⇒ all closed mftds come from
Dehn filling links

,
which may be taken to be

hyp - c ( Myers -93) , so
"

most
" closed 3-mftdr

are hyp - c .

"

Later well see : b - theorem .

Also
, for knots , Elo exceptional fillings.
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6.4 Geometrize :

theorem 6.25 : Let M admit a complete hyp - c
structure

,
and fix a hero ball neighborhood

of a cusp C .

Let Sn be a sequence of
slopes on 2C such that the length of
( a geodesic rep - re of ) Sn

,

measured in the
induced Euclidean metric on -2C

, approaches a.

Then for large enough n
,
the Dehn filled

mfldr Mcm are hyperbolic and approach
M as a geometric limit .

Goal : understand this theorem
.

Roughly speaking , Mn → M as a geometric limit
means that geometric invts

. of Mn are close
to those of M for large n

.

E.g : Mn -2M ⇒ vollmn) → volley

info :

Th (Tiirgensens Them) : If MG) is obtained by
Dehn filling M and both are hyp - c , then

vol(Mess) e Voll M) .

so Vol(Mn) converges to rot (M) from below .
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6. 4. Igef spaces

(see Benedetti e Petronio
, Canary et . at 2006

, Cooper et al 2000)
.

Define 6.28 : Let X and Y be metric spaces
with distance function dx and dy , resp .

For k so
,
a bijection f :X → Y is Ktsilipschitz

if for all x, y E X
,

Idycqyltdylfui.fm/EKdxCxiy)Def-n-6.29
: Let X and Y be compact metric

spaces .
Define the bilipschitz distance to be

inf { I log biliplflltllogbiliplf
- 'Il }

where the ihfimvm is taken of all bilipshcitz
maps from X→Y

,
and biliplf ) denotes the

bilipschitz constant
,
i.e .

,
the minimal K for def- n

6.28T If is no bilipschitz map from
X to Z

,
then the bilipschitz distance is a.

* bilipschitz distance -7 biipschitz topology
on the set of compact metric spaces.
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Define ;6.30 : Let { Xn} be a sequence of locally
compact metric spaces with distinguished barepoint
kn C- Xn for each n

.

The sequence ( ( xn
,
en) } is

said to converse in the pointed biliph.tk topology
to IX. x ) if for any R > o

,
the closed nbhds

. Brun)
of radius R about Xnt Xn converge to the
closed neighborhood Bely) about X in X in the

bilipschitz topology .

Rmk : This allows us to talk about convergence of
non - compact spaces (bilipscnitz topology is for compact
metric spaces) .

We want something stronger :

Defined : Let { Xn } be a sequence of locally
compact metric spaces with distinguished basepoint
Xn C- Xn and orthonormal basis Vn of Tenth ,

Hu
.

The sequence { ( Xn , Xn ,
Vn) ) converges inthe

tamed podbich topology to (X, x. v )
if for sufficiently large R > O and all k > I

,

F no sit . for n'- no , there are open nbhds .
Un of Ballin) and U of Bialy) ,

andK-bilipsehitzdiffe-o-smfi.LU,v ) → (Un .vn) with fnlx) -- Xn
and Dyfnlv) - Vn .

Also called : geometric convergence, & convergence inthe
refined GHff¥y .
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6.42 Convergenceof discrete gaps

If M is a hyperbolic 3-mfld , then ME "%
for some PEPSLak discrete

,
torsion free .

Thus
, given a sequence (Mn '

't't } of hyp - c 3-mflds,
we can consider the associated sequence {I}
of holonomy groups .

Def i Let G be a group ( es .

. T.CM)) and

let pi : G → PSLZQ be a sequence of
representations . {Pif converges algebraically
to PCG ) if for every TEG

, Pich →pcr) .

Def 's : A sequence of discrete groups rn Emad
converses geometrically to be if

CD for any convergent sequence { rn,} Ern , limper
⑦ for any TEE ,

there is a sequence Vne ?
s - t

.
link =V

.

- Also called convergence intheChabavty_pgy .
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¥34 : TFAE :

( D Discrete
,
torsion free groups rn EPSLZQ

converge geometrical to A

(2) There exist basepoints in C- HI! and

Xo C- HYE ,
and oriented

frames Un and Va for Txnltttypn)

and t.MY ) s - t
. ( IHYpn.xn.vn )

converges to (Mhz , xo.vn ) in the framed

pointed bilipschitz topology .
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trample :

hyperbolic
Let M be a 3-mfld with a - single torus

cusp ,
such that the ( I, - n ) Dehn filling Mu

.
- n)

is hyp - c for nZ9 (w - r
- t . a basis 4,7 for TILT) )

Let Mn be the holonomy group for Main ) ,
so that Pn : TI

,
→ ITEPSLZE .

[
since rotation angle of µ and

t are both < 24 ,

- n we can justThen ZITI = §µ - rig, = gang, use mommies
.

=p.CM) puttin
[ by def 'n of Gu , Ga

since a rotation by Zhi is the identity
in PSLZQ

, n

Palm = pnlt ) .

Consider ( palm , Pna )) = spin> EZ

as rep -ns Yn '

- Z → PSL#
.

, Unh) --Palm) .

As reps , 4h converge to a parabolic rep - h
of Z into PSLZQ

But YNIZ ) = nuns) converses to a

rank 2 parabolic subgroup 2×21 gen. by
linkin and linen HY
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Ch
. 5:DEvp¥¥position

Main Goal : Decomposition of hyp- c 3-mflds into
'

thick '

part and simple
'

thin ' parts

5. 1 Discrete subgroups of loom '-UH 3) = Psv .

Defoe : A subgroup re Pshzlc is discrete
( or , Kleinian) if it contains no sequence of
distinct elts . converging to the identity .

Equivalently ,

L s : A subgroup r ' PSLZG is discrete ⇒
it contains no sequence of distinct eltr

. converging
to an ett

. A C- Pshzlc

proof : easy (An → A ⇒ Ana
- '
→ Id)

(Purcell does Ant , Ari
'
→ Id

. Why ? )

• In general
, finding discrete subgroups of PSLZQ is

herd .

Goal : show that holonomy group of complete
hyp - c structures are discrete

.
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Lemma6 : Let {An } be a sequence of etts .

of Pshzlc
.
Then either a subsequence of {An}

Converges to some AEPSLZG
,
or F qE2HP

sit . for all XEHP
, { Ancel } has a subsequence

converging to q .

proof : idea : look at fixed pts. pn ,qnE2lH
'

of An .

ZHI' compact ⇒ corn
. subsequences to p,q .

After conjugation , may assume p
-

- O
, go , or

p=q=o .

w.to
-g . may assume in both cases that

q=a is attracting fixed pt . So An -_ anz or

An -- brittan
,
with bn→l . If lanl is bounded

,

an → a
,

so An → A
,

A- = az or 2- ta
.

If an unbounded
,

A-next → q for all XEIH'
,
since

q is attracting fixed pt .

-
Ztbn
-¥
→

-

Details : Purcell
. D
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Refn : Ms PSLZG
.

• MAHI' is properly discontinuous
if for every dose ball BEHP

,

{ rent HB) NB ¥0 } is finite .

. Malti is free if only Id Er
has a fixed point

(MA is free ⇐ M contains no elliptic )

Leme : ME Prtc is discrete ⇐ RAHM is

properly discontinuous
.

proof : (E) suppose G is not discrete
,

so F An → Id
.

i
- teeth'

,
dlx

,
Anca) 0

Let B be a closed ball about x of radius 1
.

Then dlx
,
Anu)) < I ⇒

An c- { Aer IAIBINB to}
,

so the set is infinite .

.

.
.
. ...÷
An
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(⇒) suppose F a closed ball B of radius R
sit . S={ A Enl AIB)nBt0} in infinite.A
i:*:c: :c::* intima

.

i - Anlx) has no rub sequence converging
to a point in 21143

.

By Lemma 5.6
,

An has a subsequence
converging to A C- Pshzlc .

i
- P not discrete by Lemma 5.5

. II

Bopn .

. M RHP is free and properly disc
.

⇒ HPa is a hyp - c 3-mfld . with covering

projection Ht ' → Hyp .
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pref : ( ⇒I suppose MAHI ' is free e p - D
.

Let x c- HPa ,
I e p

- '
w

,
where p

: HP → Hbr .

rnrttp

Since action is free e P.D.
,
there is a closed

ball By about I sit
. Be is disjoint from

all its translates by P .

i
. int ( Be ) maps isometrically to a nbhd . of
X via p , so Alyn is a hyp - c mfld . since

this nbhd . is evenly covered by the
translates of Be , p is a covering projection .

⇐) Now suppose Apr is hype and p : HP →
"%

is a covering projection .

For any XEIH'
,
T' permutes p

- ' ( pix)) , and only
Iden fixes x

,
so the action is free .

Let BEHP be a closed ball
.

Claim : for any x. y EB ,
I nbhds U ⇒ X

and thy Ty sit . gluey)nVxy FO for
at most one get'-
-

←
'

non-trivial .
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proof of claim: If peat ply) ,
take disjoint

nbhds of pix) and ply ) and lift to
HP to get Uxy and Vey .

If pix)
-
- ply ) ,

take a nbhd . of pix )
that is evenly covered and lift to 1H '

In .
"" '
""

"'

+ glued ""
since nogluey) -- Vey for all g

↳ p for exactly plum) nphky)
-

- Ol '

one get ①pull

m

• Cay) C- BxB
,

and the sets Un, Ney cover

B
,

so F finite sub cover

{U ,xV . .
. . .

,
Un Nn } with associated ells

.

g. , . . .

, gn as described above ( some maybe - Id) .
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tf Ver and x c- HB)nB
,

then (V'Kl , e) c- BxB
.

i . ( VIX)
,
x) C- Ui Xvi for some i

,
so t=g ;

i - V C- { g , .
. .

. ,gn } , so the action is RD
.

→ I

5.2 : Elementary greupe

Defa : A subgroup fEPsLzQ is elementary if
either F XEHP sit . Me =P or

← stabilizer of X .

Fix ={ A C- 21113 I run -- x for some Id # Ver}
contains at most two elts

. ( i.e.
,
one or two)

.

• Else : non - elementary .

-

Pep-n_52 : If MEPsLaf is discrete and torsion

free ( i.e.
,
contains no elliptic) ,

and is a nontrivial

elementary group ,
then either

C) Ifixlrll =/ and M€21 or PEEK
,

and M is generated by parabolic .

(2) ( Final =L r ⇐ 21
,

and P is gen .

by a loxodromic with axis connecting the fixed pt .

proof : exercise .
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Corollary : If Mt Prall is discrete
,

then any 2×21

subgroup is generated by a pair of parabolic
with a common fixed pt .

Def i Let Me Pshzlc be a torsion free
Kleinian group , and let My t M be a

non - trivial elementary subgroup with a

single fixed pt , which we may assume

(by conjugating r) is a .

Let It be the hero ball of height 1 about a :

H -

- { Lay ,z) I 2- It }

If 1=21 ,
then Hln

,

= A ell
,
o )

,

where A- is an annulus
.

We say Hfe
,

is a

tank Cep .

If Moo -=Z×Z
,

then Hln
,

= -12×49
,

where T
'

is a Euclidean torus
.

We say

Afg is a rant ever .
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Lemma 5.18 : If T is a non - elementary discrete
Torsion free subgroup of PSLZG

,
then

H Irl -- o

(2) For any nontrivial Atf, 7 a loxodromic
Ber that shares no fixed point with A .

③ If Ben is loxodromic
,
then no nontrivial

( th has exactly one fixed point in

common with B
.

(4) f contains two loxodromic with ne fixed pts .
in common .

proof : ( D
'

- f non- trivial
,
torsion - free ⇒ contains an

infinite order ett
. ⇒ Il)

(3) : Suppose Ber is loxodromic
,
and 7 CEM

having a fixed pt . in common with B
.

Conjugation vs may assume 13=(8%9) , t.pl > I,
-

( = (Ao %) .

Then fired pts .
- o and a
fixed pt ,

a

BKB
-

no '
-

- f : able:-D)
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Let n → - o .

Then

B
"

CB
- "

C
"
→ ( '

o

- a! )
Lemma 5.5 ⇒ ( B

,
C ) not discrete

⇒ f not discrete
. Note : we

only proved
fixes a conj . to

(2) case l : A is parabolic -

- y von, )
,

but

conjugation of f -s A = ( ' o
'

, ) this is
true .

T non- elementary ⇒ F Cer that
does not fix a . If C is loxodromic

,

we're done
. otherwise, since C does

not fix a.

C- ( Ibd )
,
cto

,
and AC -- fate btdd)

has trace tr (AG = at Ctd =c±2 Eff-2,2} .
i. AC is not parabolic , mvstbeoxodomic .

T is torsion-free ,

so no elliptic
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Case 2 : A is loxodromic
. ←

fixes 0 and
*

conjugation of fM A =L ? :p ) , Ipl > I .

M non - elementary ⇒ F ( EP sit
.

the fixed
points of C are not 0 and o

. By b)
,
C

cannot have exactly one fixed pt .
in

common withAT STC must have he fixed
pts . in common with A

. C

tf C is loxodromic
,
we are done

.

Otherwise
,

n apn bp
"

AC -_ (con dp.) has trace

trot ) -- apntdfn , which is not =I2 for
n large . Also

,
Anc does not fix 0 or w

.

(C : Ots 2- to
,
An :L ↳ UFO ,

since

C does not fix 0
,
and Anto) -- O .

(4) : Immediate from (2)
.

www.iad:20/-aThm- of Jorgensen e Klein
.

D

7Corddry 5.20 : Suppose { CAN ,
But} is a sequence of

non - elementary discrete subgroups of Psh Cl s - t
.

liman -- A and dim Bn - B in Pree
.

Then SA
,
B)

is a non-elementary discrete subgroup of Pkk.
proof:( see Marden' 07)
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5.3 U¥Ey Neighborhoods.

Def -en :
. Suppose M is a complete hyp - c 3-mfld ,

XEM
.

The infectivity radius of X
,

denoted Injradx ,
is the supremos radius r such that a

metric r - ball is embedded
.

• Let M be a complete hyp - c 3-mfld
,
and

let E > o
. Define the E-thin pet of M

to be

me ={+ em I injradlxkck }
• Define the Ck past to be

M
"

-_ {XEM I injradcxl > %}
• Also

,
M" and M

"
are defined analogously .

theorem. 23 : There exists a universal constant
E
,
> 0 such that for OC EE Ez ,

the E - thin

part of any complete ,
orientable

, hyp- c 3-mfld
M consists of tubes around short geodesics ,

and rank - I and rank-2 cusps .

• the supremum of all constants satisfying Than 5.23
is called the Margulis constant .
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Rink : known bounds on the Margulis number :
0.104 E E, I O -

616

Meyerhoff ' 87 I t Cutler

.

[kaEden - Margulis
'68T

Thin 5.23 is a consequence of the Margulis
!

Lemma
,
which is a more general version of

the following :

Universal elementary nun:*!! :i÷÷%I
's'm's

£ universal constant E3 > 0 such that for all XEHP,
⇐ and for any discrete torsion-free group
- E ME PSLZE

,
the subgroup HEP generated by elts .

EE of P that translate x distance less that E
,ins

*E is elementary
→E

H -

- ( {rerldcx.hn ) - G } >§
A

proof : For XEHP
,
MERLE

,
and r > 0

,
let

Mr ,H={ rent dcx.ru) < r }
and let < Mcr

,xD be the group generated
by Mcr

,
x) .
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We need to show that Fr > o et
. for any xtkl

'

and discrete
,
torsion - free 7- PSH, Genes> is

elementary .

First we show that for fixed P and x
,
there

exists r > 0 sit .
Cr
, xD is elem .

If such an r did not exist
,

then we could find
a sequence rn -so s - t

. Crn , x ) ) is

non - elem . for each rn .

i - we can find distinct An EP sit . dlt ,AnkDsrn .

Lemma 5.6 ⇒ An→ A C- Pushed

⇒ f not discrete
.

i - for small enough r, ( Pcr, e)) is

elementary .

It follows that Pcr ,x) is finite , so we

can take r ever smaller so that Minx)={Id.}
( just take r smaller than the fin . many
translation distances for elts . in Nrm )

Upshot : For fixed r
,
x
,
Fr > O s - t

.

↳ Cmx)) = d.) (which is elementary )
.
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We now show that there is a universal constant
r> O et . for any choice of M

,
× ,

the

group { Mcr,x) ) is elementary .

If not , then we can find sequences ,

{ rn } so that ( Mn Crn
,
xnl ) is non - dem

.

To simplify things ,
fix some XEIH

'

,

and let

RNEPSLZG be s - t
. Rn (xn) - X .

Then ( Mn ( rn , xn) ) is non - elem
.

⇒ ( Ruth Ri
'

Lrn
,
x ) ) is non - elem .

-

-

- we may assume that Xn=x Vn

(we will abuse notation and still use Mn for Rnfnthi
')
.

Now fix n .
We will find An

,
But Mnlrnix)

sit
.
( An

,
B
.
> is non - elem

.

Since ( Pncrn ,x )) is non- elem
,
Thorn

,
x) contains

at least 2 elements
.

If LAN
,
Bn) is elementary for every choice of

An
,
Bn in Mn ( rn , x) , then for every such

pair : (1) An
,
Bn are loxodromic translating along a
common axis

,
with An -131k

,
or

(2) An
,
Bn are parabolic with a common

fixed pt .
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It follows that rn Irn , x ) must consist
either of loxodromic all with a common axis

,

or parabolic w/ a common fixed pt .

In the first case
,
all the loxodromic , are

generated by a single ett
.

.
otherwise Mn

would not be discrete
.

i . In both cases
,
( Tn ( rn ,

x ) ) is elementary ,
a contradiction

.

-

'

' for each n
,
F An ,Bn Efhlrnix) sit .

{ An
,
Bn ) is non - elementary .

Since rn -so
,
Ann → X and Bncx ) -IX

.

i. by Lemma 5.6
,

An →A and Bn -213
,

A ,B EPI .

i . by corollary 5.20 CA
,
B) is non - elementary .

On the other hand
,
Aki -- X and Bus -- X

,
so

( A ,B) is elementary ( stable) -- LA , B ) ) .

D



Recall : injradcx) -- sup { rl Bcr,x) is embedded } 111

To relate translation distance as in Thin

tow
.innued4.ivityradivr@sinlThms.23j.si2DLemma5.26_i.L

et M be a complete ,
orientable

,
hyperbolic 3-mfld with

M -
- thy for a discrete

group reps Lad .

For any XEM with lift * EH?

injradcx) - I an.fn{DCI .AM } ,

and this inf is realized by some non - trivial
Aer

.

pref : An r - ball is embedded at X if and
only if for all Id #AEP

,
the r- ball

Bcr,I ) is disjoint from the r-ball

A- ( Birrs ) = Btr
,
Ae )

.

This hold if and
only if DCI

,
At) Z2r for all SA .

Now
, suppose injradlx) -- b .

Then Bcb ,x) is

embedded
,
but Blbte , x) is not for ESO .

i. tf 04cal
,
F Ager sit . DCI ,AeW2lbte) .
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If the set { Ae } contains infinitely many
distinct dts

.

,
we get a sequence {An }

sit
. d( I , Ante) ) is bounded

i. by Lemma 5.6 An -7A EPSLZCI
,

so M is not discrete
,
a contradiction

.

since we
r
: {Ae } is finite

can get as

close to b It follows that for some A C- {Ae }
,

as we want ,

by: this
:# die

,
Aces ) -- b .

many
AE

↳ do this II
with .
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proof of Thin 5.23 :

Take E, > 0 as provided by Tnm
.
5.25 .

Let M=HBn be complete , orientable , hyp - c
3-mftd ,

so P is discrete
,
torsion - free .

For Cees
, if XEM

"

then by def - n injradHE
-

'

- by Lemma 5.26 7 rt Atta set . DLF, AIKE
for any lift E of x

.

Than 5.25 ⇒ the subgroup he generated by such

A is elementary , so he is generated by
a

a single loxodromic
,
or (one or two) parabolic with

common fixed pt . pE2HP

Case l : he fixes a single pt . p C- 21113
.
Then I

dies on a horophere H about p that is

fired by f .

¥¥t¥f¥¥
1717- -
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for any TEH ,
E > dce.AE) > dcg.AT )

for any generator A of re .

-

'

- yr projects to ME .

-

'

- M" contains the quotient of H
,
which is

a rank - l or rank -2 Cusp .

Casey : he is generated by a loxodromic A
with axis l .

Let R - DCI
,
l )

, TR-fy-ttttldly.lt ER}
If TETR then dty.AT)< de.AE) CE ,
so M
"

contains the quotient of TR ,

which

is a tube around a geodesic .

1- Tri
-

-
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5.4 : Hyperbolic ±mfLds efefinitevolume
As an application of Thin

. 5.23
,
we have :

The 5.27 .

A hyperbolic 3-mfld M has finite
volume ⇐ M is closed

,
or M is

homeomorphic to the interior of a compact
mfld NT with torus boundary components,
where it # Tx[oil] .

proof : €) If M is closed
,
then a fund.

domain for M is a compact set in HP
,

hence finite volume
.

If M -

- int ( Fh)
,
where NT has torus bdy ,

then Ml{ cusps } is compact ( hence finite
volume) ,

and each cusp C of M has

finite volume :

After an isometry of HP
,
we may assume

that C lifts to a horoball It about
*

,
with 2C=2H={ Lay , t ) EHPI t -

- I } .

Then voila -

- f:{dud -1,197¥
= §
,
## dt) dxdy = Iarealac)

which is finite since 2C is compact .
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(=D Suppose M has finite volume
. Fix

OC ECG
. By Thm 5.23 M

"
consists

of tubes and cusps . Since rank - I cusps
have infinite volume

,
all cusps must be rank -2

.

Since M is assumed to have finite volume
,

M
't

also must have finite volume
.

Claim : Me is compact .

By def - n of M"
, any point XEMZE is

contained in an embedded ( in M) E - ball Belk)
about x

. If x. y EM
" and day) IE,

then 13×142) and By z ) are disjoint .

-

'

- A collection of points in MZE s- t . any
two points are at least distance E from
each other

, gives a collection of disjoint
Ek - balls .

Since M has finite volume
, any such

collection is finite , and can be completed
to a maximal collection { Xi } .

Since the collection is maximal
,
the closed

E- balls {Bet) } cover ME
.

The union of
the balls is compact in M

,
and M"

is then compact as a closed subset of a
compact set

.
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Let N be the union of M
"

and tubes in

M
"

.
N is compact as a union of compact

sets
,

and has torus boundary .

Since each cusp is homeo - c to 1-2×10,1)
,

If we attach a copy of Teco ,
D to

each bdy . component of N to get NT ,
then M = int ( rt ) .

D

Corollary : Complements of hyperbolic knots and
links in 8

' have finite volume
.
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Chapter:Eiarfaus
Rink All topological mfldr in this section will

be assumed to be smooth
. Consequently :

• submanifolds have tubular nbhds
.

• isotopier of submanifolds can be extended
to ambient isotopes

• submanifolds can be perturbed to intersect

transversely .

Also
,
all 3-mfldr will be orientable

,
and surfaces

will be typically be properly embedded
.

Defoe : Let F c M
'

be connected (and properly embedded)
.

An embedded disk DCM with 3D - F is

a compressing disk for F if 8D
does not bound a disk in F

.

A surface that admits a compressing disk
is compressible .

A surface that does
not admit a compressing disk

,

and is not

S2
,

P
'

,
or D2 is incompressible .

→ 2-spurt> Pf ,

↳ disk
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'fish? cnn.is ' I aint:S Go
.

no:: :c::

⇐÷÷¥±÷÷÷÷÷÷÷÷÷ ..
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Not . that F cuts M into an outer component
homeo - c to S3l{fig - 8 } ,

and in inner component
homeo - c to 5 ' Whitehead link

claim : the outside component does not 534 fig - s }contain a compression disk
.

- Suppose such a disk D exists
.

dates
. 'm:: :

53
,

s bounds two balls
.

One of these contains K

and D
,
and is naturally

identified with DEI . ✓
The other is a ball in 5l{fig - 8} .V

Reversing the surgery glues
this ball to itself along two
disks Delo} and Dell}
c- ?: ssyfigs} is a

solid torus
,

the unknot

complement
,
which is not hyperbolic .

Contradiction
.

I
D×{ I}

is..
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If D is in the inner component ,
then F surge red along D is inside :
a sphere S

,
where separates ffics.mpfem.at53 into two balls
,
each

9h!
-

airing
,
headlong;;g? of F

This is impossible since the
#

Whitehead link is not split .

( If it were
,
then would be = 53 YOU 0}

,

so fund . grp . would be Fz
,
which it is not ! )

i
. F is incompressible .

Definition : An embedded surface FEM
'

is boundary
parallel if it can be isotoped into 2Mt
-

↳
or into a cusp

if M has cusps.

Definition .
A satellite Ket is a knot that contains

an incompressible torus that is not boundary parallel .
↳

Remove a knot K from a solid torus V
,
with

K not contained in a ball or isotopic to the core of
V
, then

" tie VIK in a knot " K'
,
K
'
non - trivial

.
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temma8.fi d) An orientate surface in a orientable

3-mfld is incompressible ⇐ it is IT
,
- injective,

i. e
,

IT
,
Cs) t.IM) .

(2) A non - orientable surface S is IT
,
- injective ⇐

2(Nfl) is orientable and incompressible .

-

tubular
nbhd . of S

Proving 8.7 requires the loop Theorem ,
which is classical

Thm 8.48 ( Papakyriakopoulos -57) : If N is a 3-mfld
withboundary , and there is a map f :D

'
→N

such that the loop fL2D4E2N is homotopically
non - trivial in 2N

,
then there is an embedding

with the same property .

proof-If-17 : Let SEM
'

be orientable
.

If 1H C- Tics) and '

↳ ( H =L
,
then V

bounds a (possible immersed ) disk in N -

- MLS
,

with 3D C- 2N
.

Since 217=2 is home topically
nontrivial in 5

,
we can realize an embedded

such D
,

which is then a compression disk .

This proves ⇒ .

If S is IT
,

- injective ,
then any non-trivial loop

on S is non-trivial in M
, so it cannot bound

a compression disk
.

(2) is left as a exercise
.

D
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Definition : Let FCM
'

,
2Fc2M

.

A boundary
compression disk for F is a disk D with

8D consisting of two arcs
,
213=2 up ,

at
.

A E F and BE 2M
,

and such that there
is no arc Vc of sit our bound a disk
in F

If F admits a boundary compression disk
,

then we say it is boundary compressible,
otherwise it isbou_ndaryincompTesrie.TDefinitioni.Lp.I-torvk@ri.TCp,q)=K

iii. it:* ' ÷÷÷÷:÷÷÷÷:
(4,3) - torus knot C- 4,3 ) - torus knot



124

Examples i Suppose Tlp , e) = K is a torus knot

with Ipl , let 22 .

A = TIK is a annulus
£ the torus k lies on

.

°

A is 2 - incompressible : suppose A has a

J - compression disk D
.

Since Au K - T
is a torus

,
D lies to one side of T, and

so D is homotopic to a disk with 3D either

M or d
.

i
. 3D intersects 2A - K either Ipl

or IN times
.

But a 2- compression disk
intersects the boundary (i.e.

,
K ) in a single arc

.

Definition : A surface F properly embedded in M
"

is essential if one of the following holds

( D F is a 2-sphere that does not bound a
ball

(2) F is a disk with 2FE2M not bounding
a disk on 2M

(3) F is not a disk or sphere , and is

incompressible , 2 - incompressible
,

and not
2-parallel.

Definition : A 3-manifold is
• irreducible if it contains no essential 52
• boundary irreducible if it contains no essential D2

.

• toroidal if it contains no essential torus
• angular if it contains no essential annulus .
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Thm8# : If M contains an embedded essential
torus then M is not hyperbolic .

pref : If M contains an essential torus
,
then

2×2 ET, (M) .

i - by a corollary in Chs
,

this 2×21

subgroup is generated by parabolic with a
common fixed pt .

i - by thick - thin decomposition ,
the torus

is isotopic into a cusp , hence 2 -parallel.

Corddry 8.1 : A satellite knot complement does not
admit a hyperbolic structure

,

theorem : Suppose M
'
has torus boundary , and

int (M) has a complete , finite Volume hyp - c
metric

.

Then M cannot contain an essential
annulus

.

proof : Suppose M is hyperbolic , and A- EM is an

essential annulus with core curve V
.

Since 2A ESM
,
r is isotopic into 2M

.

i
. V is isotopic into a cusp of intlm)

,
so

it is isotopic to a curve of length → O
i. holly) is a parabolic
since V~2At and frat

,
both 2- components

of A correspond to the same parabolic ett .
i . A is 2 - parallel .



126

Conolly 8.14 : A torus knot complement cannot

admit a hyperbolic structure
.

proof : If either p or q is It
,
then Tepid

is the unknot
,

which is not hyperbolic .

The annulus A -

- TIK is 2- incompressible
(see Ex

.
8.10) and incompressible ( similar

argument ) .

If A were 2-parallel then it would be
2- compressible

,
so it is not 2 - parallel .

" is on;:÷:"":: """

h-eorem8.tt#HyperbolizctionLThvrston'82,KapovYh.oD) :
A knot complement is hyperbolic ⇒ it is not

a satellite knot or a torus knot
.

More general.ly/.afinEinpYiii5iddmYidvkoiiiuTH-
and

nonempty torrs boundary has interior

admitting a hyperbolic structure ⇒
it is irreducible

,
2 - irreducible

,
ahvronida

,
and

anannvlar
.
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8.2 : Teideposition , Eifertfiring ,Geometrize

Definition : Let D
'

be the unit disk in Cl
,

and

let f : D' → D2 be the map za e
"ki

- z
,

gcdlp, e) =L .

A Eifert fibered solid torus of type Cp, e) is

obtained as the mapping torus

I = D- ×4{engulfed .HI

• The fiber {03 XI is called ground fiber
the exceptional fiber O

minion:i. in. s÷÷÷:
are called normal fiber -

← exceptional fiber
- If g- I , call it a regularly
fibered solid torus

-

Definition : A Seifert fibered space is an orientable
3-mfld M that is the union of pairwise disjoint
circles

,
called fibers , sit

.

each fiber has a nbhd
.

diffeomorphic Toa Seifert fibered solid torus
.
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Example 8.20 : 83 is the union of two solid tori

V and W
.

For Cp, g) =L , if V is

SFST of type (pm) and W is type (q , p) ,
then gluing 2V to 2W identifies
the fibers on the boundary .

v

Etty; Evening. ester
w

previous example .

The result
is (still) Seifert fibered , and
is a Cp,q ) torus knot . //µ

theorem-22 ( Casson- Jungveis
' 94

,
Gabai'92

,
others) :

A compact , orientable irreducible 3-mfld
M with infinite fundamental group is

Seifert fibered ⇐ IT
,
(M) contains a

normal infinite cyclic subgroup .

Remake. If TEPSLZG is discrete torsion - free
→ non- elementary , then it has no normal
inf. Cyclic subgroup 147, since 4 and g4g

- I

have different fixed points if Y and g
do
,

so 949-1*4 " '

;
. My, is Seifert fibered mfld.

⇒ P is elementary and torsion - free discrete .
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Theorem 8.23 (JST decomposition [Jaco -Shalem , Johanson ' 79) )

For any compact, irreducible ,
2 - irreducible 3 - mfld

M
,

there exists a finite collection T of
disjoint essential Tori such that each component
of MVT } is either a toroidal or Seifert fibered .

' A minimal such collection
-

is unique (up to isotopy ) .

↳ "the JIS decomposition of M
"

' union of Seifert fibered pieces is called the

characteristic submanifold . of M .

( which may be empty- e.g .

Ex 8.4 )

T.heorem8.LI/Geometrization for closed mflds) :

Let M be a closed
,
orientable

,

irreducible 3- mfld ,
⇒
Poincare'

Peroz ① If IT
,
CM) is finite

,
then M is spherical conjecture

Per 03
i.e.

,
M = 83g , re. 014) ASI

' without fixed pts .
CJ94
→ (2) If Tilly is infinite and contains a 21×21 subgroup,

Gab92 then M is either Seifert fibered or contains

an incompressible torus ( so not hyp - c)
Pork

(3) If T.IM ) is infinite and contains no 21×21 subgroup,Pero 's
then M is hyperbolic .
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8.3 : feces ,a-nghedpelyhedr-a.an-dhyperboli-ity8.3.li
. i

Definition 6 :

ideal polyhedron Po truncated polyhedron P

face
→ I

tL ease
boundary
edge [ boundary face

'A properly embedded disk (D
,
2 D) E ( P

,
2 P)

is nirmal if the following are satisfied :

(1) 21) ELP is transverse

• (2) 8D is not contained in a single face12 - face

③ For F a face or 2 - face of P
,

the arc
8D n F does not have both ends on a

risk edge or boundary edge, or an
adjacent edge ad hedge .

(4) 3D meets any edge at most once

• (5) 8D meets any 2 - face at most once
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Definitive8.2-7: A surface is in nforum
with respect to a polyhedral decomposition ,
or is hemal

, if it intersects the

(truncated) polyhedra in normal disks
.

( Knerr '20
,
Haken -61

,
Shubert '61

,

others) :

Suppose M admits an ideal polyhedral decomposition .
• If M contains an essential 2 -sphere , then it

contains one in normal form .

• If M is irreducible and M contains an essential
disk

,
then it contains one in normal form .

• If M is irreducible e 2- irreducible
,
and

contains an essential surface , then that surface
can be isotoped in M to be in normal form .

proof . Let SEM be essential
. Isotope s so

that it is transverse to faces ,

a -faces
, edges,

and 2-edges of the truncated polyhedra .
Let

f- '-lsnffacefltlsnfa-fa.es/e--lsnfedges3ltlsnl2-edges3l
( f. e) is the coemplexity of S

,
and we order

such tuples lexicographically .
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Goal : adjust S to remove violations of ② - Cs)
,

reducing it complexity at each step .

Finite complexity ⇒ finitely many steps suffice .

First : Can adjust S so that it intersects truncated
polyhedra in disks

, reducing complexity .

-

suppose some component F of Snp is not a

disk
. If S is a sphere , then F must be

a sphere with holes (there are the only subsurface,
of s) , so Frap is a union 22 circles

.

Each such circle bounds a dirk D
,
and at

least one component of SID is incompressible .

Suger S along D
, pushing the resulting spheres

away from F
. complexity is reduced

.

If S is a disk and M is irreducible
,

then again
F- is an n - holed sphere , 1. T
own!
. ,g

,

similar argument

If M is irreducible and I
'

- J - -

in:m÷:
Snap bound a disk \ →Type:*: nineties
achiness :insists :.. is . - g .
S is essential

,
V

-
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bounds a disk D
'
on s

.
Then

§Du D
'

is a sphere , which

÷÷:÷÷÷÷÷::i÷
sphere , removing the

intersection with 2P #and reducing complexity . -

'

'

- we may assume that S
K

intersects the polyhedra in
disk

. J =\
www.wisgm.ve violations .

.

.

-
- I

(2) : If 2 (Snp) contains a#
closed curve that is on a single facet 2 - face F
then there is an innermost such curve

,
which

bounds a disk DEF
.

If S is a 2- sphere ,
as before one component

of S surge red along D is essential
,
and the

surgery reduces complexity .
If M is irreducible and S is a disk

, singer along
D to get a disk and a sphere .

M irreducible
⇒ the sphere bounds a ball

,
so can isotope

S across this ball
, reducing complexity .
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If M is irreducible and 2- irreducible and S

is essential
,

then 3D bounds a disk DIES
,

so DVD ' bounds a ball
,
and we can isotope

5 across this ball
, reducing complexity .

(3) : Suppose A is such an arc

in

an

④
"Es ⇐

a

\
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Cases la) and (b) are removed with the

isotopes shown
, reducing complexity

For case Cc) : S is not a sphere (since it
has body ) , ro M is irreducible

. If S is

a disk
, singer along the disk D shown

,

obtain two disks D
' and D "

.

Both of these
are of lower complexity ,

and one must be
essential since S is

,
so replace D with the

essential disk
.

If Sir not a disk
,
then M is irreducible t

2-irreducible
.
Since S is essential D is not

a 2 - compression disk , so the arc a

bounds a disk D ' Es (with an arc on 25)
i. DVD is a disk with 2µVD) C- 2M

.

Since M is 2 - irreducible
, 2(DVD) bounds a disk

D" in 2M
,
and DVD'

u D " bounds a ball . By
isotopy across the ball

,
we remove x and reduce

complexity . g)
D
'

-
i

:* -
*

'

A-
\ it

(4) and 15) : exercise
.
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AngleEd combinaorialarea

Recall that if a 3-mfld decomposes into ideal
tetrahedra

,

then a complete hyperbolic structure

satisfies edge equations and completeness equations.

Edge equations : Ele;) =/ and [ Argfze.gs) -- 2T,
-
-

non-linear
linear

In general, solving the gluing equations is hard
,
but

solving just the linear part of the edge equations
is easy .

Def-n-8.IE : An angle structure on an ideal

triangulation T of a mfld M is a collection

of dihedral angles for the tetrahedra edges at.

lol Opposite edges of a tetrahedron have the same angle.

4) Each dihedral angle is in (0,7 )

ID the same of the angles around an ideal a

vertex is IT

(3) The sum of the angle around an edge
of T is 27 1¥

''iitiituniiitofa 's; astern .

•
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Remarks .

TD
-

is the linear part of the edge equations
( o) guarantees that the angles are compatible

with a hyperbolic tetrahedron
(D ensures the tetrahedra are not flat or degenerate
¢) ensures the triangular cross section at a

vertex has a Euclidean structure
.

• All equations coming from ( O) → (3) are linear

• An angle structure on a tetrahedron determines a

unique hyperbolic structure on the tetrahedron

• We have thrown out the non - linear part of the edge
equations which prevents shearing singularities :

Al
ve

⇒ an angle structure does net necessarily give a
hyperbolic structure (and if it does

,
the structure

may not be complete , since we have not included

completeness equations) .
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We can also assign dihedral angles to polyhedra .

To

generalize the notion of an angle structure to

this setting we need :

Def-n8i Let D be a normal disk in a (truncated)
ideal polyhedral decomposition of M,

such that
each ideal edge of M has been assigned an

interior angle in (o, TI) . Let a
, , . .

.

, an
be the

angles assigned to the ideal edges ( non 2- edges)
met by 3D

.

The combinatorial area of D is

a (D) = (Tt - ai) - 2T + IT .l2Dn2M )
-

# of intersection
with 2-faces.

If S is a normal surface , then the combinatorial
area of S is the sum of the comb - l areas

of the normal disks of S
.

*Note : If D is totally geodesic , and
D tap

,
then ALD) is the

hyperbolic area of D (exercise) .
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Def-n8 An angled polyhedron structure on a 3-mftd
M is a decomposition of M into ideal
polyhedra , along with a collection of dihedral angles
assigned to the edges of the polyhedra sit

.

H Each dihedral angle lies in 10,71)
(2) Every normal disk has non- negative combinatorial area .

(3) Interior angles around an edge sum to 21T

Tadhg
In particular , angle structures are examples of angled
polyhedra structures :

Lemme 8.31 : Let M be a triangulated 3-mfld with
an angle structure

.

Then the combinatorial area

of any normal disk D in a ideal tetrahedron
of M is non - negative .

It is zero ⇐ D is a

vertex triangle or a boundary bigon .

poof :

boundary
ertex triangle

bison
y ⇒* + em

\ ; ( ACD)

quad f ,

= 0 if an angle structure

(meets no
alD) =2Tl - (4+22+23+24)

a-races) f -

- 2K - a
.
- as) if:L!!

'
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If D meets 22 2-faces , and at least one

ideal edge (so not a 2-bigon) , the ACD) '- CGI -ai) > 0 .

- If D meets exactly I 2 -face, it
must look like this : →'

i
- A (D) = ZIT - L - p - tutti/ " t

'
'\

l l l

= IT - (Ltp) > O in s I
since xtptr = IT

l
l l

• All other cases are
covered in the picture on

,

previous page . IT

It follows that :
Theorem 8.34 : An angle structure on an ideal
triagulation is an angled polyhedral structure .

¥1.35 (Gauss - Bonet) : A normal surface S in an

angled polyhedral structure satisfies

a (s) = - 27×15)
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proof : For a normal surface S
,
XIs ) -- v - etf

,

where f = #{normal disks}
e = # of Me of 5 with faces
v = # of h 's with ideal edges .

(intersections w/ 2-faces and 2 - edger do not
contribute anything to XO) ) .

a(s) = §alD) -

- § ( ECT - ai ) + Tl ( 21372M) - ED
ZTIV

-
-Ztif

= IT ,§( ( { 1) tl2Dn2Ml) - { { di -T
Claim : ( E. 1) tl2Dn2M/= # {edges of D) (met 2-edges)
Let D ' be the result of shrinking
2-edges of D to Vertices

.
Then the

number of vertices of D ' is ¢ t 12002Mt
,

and the number of edges of D
'
is the

same . Edges of D
' and exactly the non - 2- edges

of D .

' D

since each edge of S appears on 2 disks
,
we get

Tl§(laDn2Mlt = 2'T e
D .
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* no
.

angle structure

8.3.3-ttyperboli-ity-heorem-8.se
: Let M be a mfld admitting an

angled polyhedral structure
.

Then M is

irreducible and 2-irreducible
.

Moreover
, if the angled polyhedral structure

is an angle structure
,

then M is

a toroidal and annularandhastorvsb-day-h.DK
; F an angle structure ⇒ F a hype structure

.-
Converse ?

M a hyp- e link complement ⇒ F a triangulation with
proof : an angle structure
• irreducible : suppose S is an essential sphere . We

can put S in normal form by 7hm 8.28
.

Since normal disks have non - negative combinatorial
area

,
a (5) ' O .

On the other hand
, by

Gauss - Bonet
,

als) = -4T
.

Contradiction
.

• 2- irreducible : S an essential disk ⇒ als ) -- -21T
,

again contradicting a (5) '- O
.

Now assume that the angled polyhedral
structure is an angle structure

.

• torus boundary : boundary components come

from gluing 2 - faces
,
which are isotopic to

vertex triangles .
Since a (D) =O for D a
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vertex triangle , X (s) -- o for S a

boundary component .
i
. S is a torus .

• a toroidal : Let S be an essential torus
.

S can be put into normal form since

M is irreducible e 2- irreducible
,

and
a (s) =O by Gauss - Bonet .

i
. each normal disk has combinatorial area
0 , so is a Vertex triangle or a

boundary bigon .
But S is closed

,
so

boundary bigonr do not appear .

Vertex triangles can only glue to other
triangles at the same vertex

.
To get

a closed surface , all vertex triangles at
a given vertex are glued , giving a
J -parallel torus .

i - S is

÷:÷:÷:÷÷÷a. ii
vertex triangles and ②- tigons.
Since S has non - empty
boundary , there is at least one
2- big on .

But 2 - tigons only glue to other 2- big ons
at the same edge (class) , and these glue up
into a compressible annulus -



144

8.4 :

PItedurfacesanda6-theorem.DE/initim
: An embedded surface SEM is

hoemetopicy boundary incompressible if
for any properly embedded are a in S
that is not homo topic rel endpoints into
25

,
the arc a in M is not homotopic

rel endpoints into 2M
• i.e
,

non - trivial arcs in S are non - trivial in M
.

• ⇒ 2 - incompressible

lemma8.to : Let M be a compact mfld sit
.

intlM ) is hyperbolic ,
and let (5,25) ECM ,2M)

,

25701 , with S homo topically 2 - incompressible .

Then the ideal edges of any triangulation
of S can be homo toped to be geodesics
in M

. Similarly ,
each ideal triangle can

be homotoped to be totally geodesic in M
.

proof : Let e be an ideal edge of a triangulation
of S .

Since e is homo topically non - trivial
in S

,
it is home topically non - trivial in M

.

i
. can lift e to EE Hl'

,
and E has

distinct endpoints on 21113
,

so homotopic to a

geodesic .
This descends to a homotopy of e .

For a triangle twin
. :p:

'Yg: 'edgewise!! ""of S
, we first er

, ez
of t to geodesics in M

.
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Now
, lift e

,
to a geodesic E

,

in

HP
.

Since in -1ft) is simply connected it

lifts to the interior of a triangle E in HP

(determined by E ) .

The other two edges of I are lifts E
,

and E3 of ez and ez .
The E

,
bound

a unique totally geodesic triangle that is

homo topic to F .

Now push the homotopy down to M
.

pg

The homotopy in the above proof is called

straightening .

Note that we can straighten
all triangles of triangulation simultaneously ,
but the result may not be smooth

or embedded may be bent t

along edges .

Definition 8.39 : A pleated surface in a hyp - c
3- mfld is a pair ( s

, 4) consisting of a
surface S with complete hyp - c structure

,

and a local isometry 4 :S → 415) EM
such that each point of S tier in a geodesic
mapped to a geodesic by 4

.
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Preposition.4O : A homo topically 2 - incompressible
surface S with 25*01 properly embedded in

a hyperbolic 3-mfld can be pleated.

proof : straighten S in M (writ . an ideal

triangulation of S) . The triangles of S

can be realized as triangles in HR
,
so

that they glue up into a fundamental
domain for a hyperbolic surface S

'

.

The

map Y :S
'
→ SEM that maps the

triangles back to S is the pleating map .

Let M be a 3- mfld with a torus boundary
such that int IM ) is hyperbolic ,

and let T

be the torus boundary of a cusp neighborhood
for a cusp of M

.

Recall that an isotopy class

of simple closed curves on T is called a slope .

Def 8.41 : The Elope length lls) of a slope S on T is

the length of a geodesic representative of s with

respect to the induced Euclidean metric on T.

i
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theorem (A 6 - theorem) :

(Suppose M is a compact mfld with torus
boundary , such that in TCM) is hyperbolic .

Let s
. .

. . .

,
Sn be slopes on distinct boundary

components of M rt
.

lls;) > 6 for all i
with respect to Euclidean metrics coming from
a disjoint collection of horospherical cusp tori

for M .

Then the mfld Mcs
, . . . . .sn , coming from Dehn

filling M along the si is)( irreducible , yboundary irreducible
,
anannvlw

,
and a toroidal

.

Theorem ( The 6- Theorem fagot , Laeken by '00))

( ' t ) ( hyperbolic )

RMI : If 21ms
. . . .

..sn ,) # 01
,
then Tum 6.42

give hyperbolic (by hyperbulization ) .
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We will prove Thm 8.42
,
but not the 6 - theorem .

plan : Assume M is reducible
,
2 - reducible

,
annular

,

or toroidal
,
and show that there is then

an essential punctured sphere or torrs SEM
with 25 e- { s . . .

. . .sn } .

Then pleat S

and using the resulting metric to show

that the si are at most 6
.

lemma-8.LI : Let M
,

s
. . .

. . .sn be as in Thm 8.42
.

Suppose Meg
, . .

. .sn ,
contains an essential sphere ,

disk
,
annulus

,
or torus

.

Then M contains an

essential
,

homo topically 2 - incompressible
punctured sphere or torus 5

,
with 25 C- { s, , . . .,Sn },

Xlsls - I
.

proof : Let Ms = Mcs
. . . .

. .sn) .

Let FEM
,

be an embedded essential sphere ,
disk

,
torrs

,

or annulus
.
Note that Mc Mg =MU{ solid Lori } .

If FEM C- Mg
,
then since M is hyperbolic

F is not essential in M
.

In this case

F has a compression disk DEMS Ms
,
which

is impossible since F is essential in Ms .

÷ . E cannot be isotoped away from every
filling solid tori

.
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For each filling solid torus Ti
,
we can

either make F disjoint from Ti ( by
isotopy ) , or make F transverse to

the core curve of Ti , with Fn2Ti={ 'II:p ::b si}
- tf Fn 2T; 22 is a curve

,
then

either a bounds a disk in

Ti , or there is another

Eai: : 'is :* :O

Ti

annulus A E Fn Ti
( i.e

; if F goes into Tl , it must be

capped of by a disk in T.

, or
come back

out)

Fgm the above
,
it follows that S -

- Fn M
a surface with 25 =2Fu{r

Si , and
' '

- - -

- T } , where
each ti is isotopic to some K is minimal

Tie, isotope F to intersect the Ti minimally ) .

Note that S cannot be compressible , .

since a compression disk for S would also
be a compression disk for FZS .

If D is a 2 - compression disk for S
,
then

3D -

- auf ,
ACS

, PEST; for some Ti.
Since 8D -

- auf , B is isotopic in M to 2
,

so we can isotope F across Dei
,
so .

that pet is taken to xxI
.
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ti
:i:)
I

'
'

I
Then we can isotope F

/ \
across

x x
.

Di , where Di is the disk bounded

by si ( i.e
,
it is the meridional disk

of the filling solid torus
.

This removes the

intersection of F with Ti , contradicting
minimality of Fritts .

It remains to show that S is homotopically
2- incompressible . If not

,
then there is

a non- trivial arc orcs that is trivial
in M

,
i.e .

,
d is homo topic into 2M

So L is homo topic to an arc p C- 2M
.
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Thus dug bounds a disk D in M
,
which

may be immersed .
Consider N = MLS .

Let team be a curve JM
isotopic to 25 and intersecting
p once

.
Since 1212451=1,

Lupo is non - trivial on 2N
. - -

I:b 's.kz. ":eI"is:D.
disk in N

,
and hence also

p""

i. Maip bounds a
,

-
-

y

2- compression disk
,
which we

we have already shown is '

l

impossible . €
Last

,
XO) s - I since otherwise I l

S would be an essential sphere ,
disk

,
annulus

,
or torus

,
which

is impossible since M is hyperbolic .

y
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↳ 8.41 : Let M be an orientable cusped
hyp - c 3- mfld, and let C be a cusp
neighborhood of a cusp , T= 2C

.

Let f :S → M be a pleating of a
punctured surface S

,
with n of its

punctures mapping to C .
A loop about

any of these punctures is represented
by a geodesic on T

.

Let t be the

length of this geodesic ( in T )
.

Then in the hyperbolic metric on S
,

f- ' (c) ES contains horo spherical cusp
neighborhoods R

, , .
. . ,Rn of the n punctures

of S
,

with disjoint interiors
,
s

- t
.

l(2Ri ) -- area (R ;) ZX Vi .

proof : Let T be an ideal triangulation of
S compatible with the pleating map .

Let Co EC be a smaller cusp neighborhood,
chosen so that Conft ") consists of
arcs limiting into ideal vertices of T.

I.e
, f-G) nco consists of tips of triangles .

Then f-
' ko) is a collection of embedded

cusps Rio
,

. . .

,
R: in S .
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III. Ho
-H#¥# .

1-
Let Y : M → Ht ' be the universal cover

.

C and co both lift to disjoint collections of
horo balls via 4 .

Since co EC
,
for each

Hey
- ' (c)

,
there is a horoball Ho C- 4-

' (co)
,

Ho EH
.

Let d -

- dirt,+p(Ho ,

H )
.

Then the distance
between

any two lifts of Co must be
at least 2d

.

i - The distance from R: to RI is at least

Id for itj .
Taking R

, ,
. . .

,
Rn to be cusps in S distance

d from Ro
. .

. . .

, Ron Ri

respectively ,
it follows#lHz2dthat the Ri ' Rs

me:*.
.

Ry
Ci Ryo
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Now
,
let to be a Euclidean geodesic on

Flo representing f- ( 212 : ) .

Then Kro ) -

÷:÷÷÷÷÷:÷÷÷÷:
""

.

X=l( r) -- e- deck)
\

""""" " """" "t " ""

.

'

.

* em::÷:::i::÷:c.÷÷÷!÷÷÷÷÷i÷÷÷÷÷
Since f- ( Rio ) Eco ,

and
lµ. - e

- dhtidrd
f- ( Ri) is contained in a

d- nbhd
. of Co

,
we have-

that
f- ( Ri) is contained in C- d - nbhd of Co .

The fact that lGRil= area ( Ri) is an

easy computation (exercise) .

D
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theorem ( Biiriiczky cusp density them) :

Let S be a hyperbolic surface with

cusps , and let It be an embedded
horoball neighborhood for the cusps of S .

Then
area( H ) s # area ( s )

proof : Given S and H
,
there is an ideal

triangulation T of S s .t
.

Hat
consists only of corners of triangles :

¥¥¥¥o"

% Taints
,

"

any other
horoball in H

.
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Let T be a triangle in T
,

and map to

isometrically to a triangle T
'EM

-

with vertices o
,
I
,
*

This maps sends horoballs of H

intersecting T to Ho
,
H

, ,
Ha

.

Ho

area( Hrt)
= area (Honi) tarealttnTDtaealH.TT
and area ( H) =€

,

wealth)
-

Since area = IT . t
,
where t -- # of triangles,

areal H)⇒y=÷¥[area ( HN ) ftp.maeyfareahtnTB
-

average of the
area ( Hint)

so we need to maximize area ( Hht)
.

Now consider Ho
, Ho , H , . Since HHT

'

is a

corner
, ha -- height ( Hdz 's ,

and hi -

- diam ( H! ' 2,
i -- 0,1 :

"¥¥-hw 's ok

Since area ( HNT) is clearly maximized when
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each H* is tangent another one ( otherwise
we could make one larger) ,

it follows
that one of the three
horobalk is tangent to the
other two

.

Yin::aw%%iYF
.

- h
.

An
easy computation-

gives
area ( Hunt ' ) -- LI

and area ( Honi ') = area ( H ,
NT

' ) -- ha
,

so that area ( HAT) = ht +2ha .

This function is maximized for ↳ =/

Thus we have

areatt )
⇒

ET -

F {areal HNT) }
-

-¥,
D
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proof of Thin 8.42
- --

i

Suppose that Ms = Mcs
, , .

. . .sn ) is reducible
,

2- reducible
,
annular

,
or toroidal

.

Lemma 8.43 ⇒ F an embedded essential
punctured 2-sphere or torus S EM

.

Furthermore
, if S is a torus

,
then each

component of 2512M is parallel to some si .

If S is a punctured sphere , then all
but at most boundary components of S
are parallel to some Si .↳ If M

,
has an essential annulus

or disk
,
then S has l or 2

2- components coming from the
disk or annulus boundary .

Prop 840 ⇒ S may be pleated .

Lemma 8.44 ⇒ pleating induces horoball nbhds .

R
, , . .

.

,
Rm of S sit

.

l(2Ri)=area( Rilzllsj!
where fC2Rd has slopes, .

Let H -

- URI
i
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Then Tnm
.

8.45 + Gauss -Bonet gives
[ lls.si ) E €11212 ;) - area ( H ) ' # areas )

= ¥, -2171×141=6.1×011

If S is a punctured sphere , then at least

m -2 of the M boundary components of S
have Sig C- { S , , . .

.

, Sn } , so

6cm - 2) s Ellen.

) E 6.) XLS) ) = b. (m - 2)
( since lls;;) > 6 for each sjiE{Si , . . . .sn}

.

⇒ contradiction
.

If S is a punctured torus
,
then all of the

m boundary components of S are parallel
to some Sig , so llsj! > 6 for all i

.

i . 6ms Eels! E 6. HIGH 6M

⇒ contradiction - II


